mbaron
- 6
- 0
I want to find the Fourier coefficients for the following signal:
\cos(2 \pi t)^2
Can I simply use the identity?:
\frac{1}{2} + \frac{\cos(2 \pi t)}{2}
And then use the complex definition:
\frac{1}{2} + \frac{1}{4} (\exp{j2 \pi t} + \exp{-j2 \pi t})From the synthesis equation I can get:
a_0 = \frac{1}{2}, a_1 = \frac{3}{4}
Thanks
\cos(2 \pi t)^2
Can I simply use the identity?:
\frac{1}{2} + \frac{\cos(2 \pi t)}{2}
And then use the complex definition:
\frac{1}{2} + \frac{1}{4} (\exp{j2 \pi t} + \exp{-j2 \pi t})From the synthesis equation I can get:
a_0 = \frac{1}{2}, a_1 = \frac{3}{4}
Thanks
Last edited: