Fourier transform and vector function

Click For Summary
A vector function can be decomposed into curl-free and divergence-free components, as described by Helmholtz's theorem. The Fourier transform of these components is being explored, with specific focus on the expressions for the curl-free part, \vec{f_{\parallel}}, and the divergence-free part, \vec{f_{\perp}}. The discussion includes attempts to apply integration by parts and vector identities to simplify the Fourier transform calculations. Participants are collaborating to derive the necessary integrals and clarify the methods for handling the cross product in the divergence-free component. The conversation highlights the complexity of the problem and the need for careful application of mathematical techniques.
  • #31
I used:
u \vec{\nabla} v = \vec{\nabla} (uv) - v \vec{\nabla} u

Skipping some steps, the integral becomes:

\int_{- \infty}^{\infty} e^{i \vec{k} \cdot \vec{r}} \vec{\nabla} \left( \frac{-1}{|\vec{r}- \vec{r'} | } \right) d^3r = \int_{- \infty}^{\infty} \frac{ -i \vec{k} e^{i \vec{k} \cdot \vec{r}}} {|\vec{r}- \vec{r'} |} d^3r

= - \frac{i 4 \pi \vec{k}}{k^2} e^{-i \vec{k} \cdot \vec{r'}}

thus:

\frac{i\vec{k}}{4 \pi} \times \int_{- \infty}^{\infty} \left( \int_{- \infty}^{\infty} e^{i \vec{k} \cdot \vec{r}} \frac{\widehat{(\vec{r}-\vec{r} )}}{|\vec{r}- \vec{r'} |^2 } d^3r \right) \times \vec{f}(\vec{r'}) d^3r' = \frac{i\vec{k}}{4 \pi} \times \int_{- \infty}^{\infty} \left( \frac{- i 4 \pi \vec{k}}{k^2} e^{-i \vec{k} \cdot \vec{r'} } \times \vec{f}(\vec{r'}) \right) d^3r'

= \frac{\vec{k}}{{k^2}} \times \int_{- \infty}^{\infty} e^{-i \vec{k} \cdot \vec{r'} } \vec{k} \times \vec{f}(\vec{r'}) f^3r'

I am not sure where to go from here, but is everything up to this step valid?
 
Last edited:
Physics news on Phys.org
  • #32
LocationX said:
I used:
u \vec{\nabla} v = \vec{\nabla} (uv) - v \vec{\nabla} u

Skipping some steps, the integral becomes:

\int_{- \infty}^{\infty} e^{i \vec{k} \cdot \vec{r}} \vec{\nabla} \left( \frac{-1}{|\vec{r}- \vec{r'} | } \right) d^3r = \int_{- \infty}^{\infty} \frac{ -i \vec{k} e^{i \vec{k} \cdot \vec{r}}} {|\vec{r}- \vec{r'} |} d^3r

= - \frac{i 4 \pi \vec{k}}{k^2} e^{-i \vec{k} \cdot \vec{r'}}

thus:

\frac{i\vec{k}}{4 \pi} \times \int_{- \infty}^{\infty} \left( \int_{- \infty}^{\infty} e^{i \vec{k} \cdot \vec{r}} \frac{\widehat{(\vec{r}-\vec{r} )}}{|\vec{r}- \vec{r'} |^2 } d^3r \right) \times \vec{f}(\vec{r'}) d^3r' = \frac{i\vec{k}}{4 \pi} \times \int_{- \infty}^{\infty} \left( \frac{- i 4 \pi \vec{k}}{k^2} e^{-i \vec{k} \cdot \vec{r'} } \times \vec{f}(\vec{r'}) \right) d^3r'

= \frac{\vec{k}}{{k^2}} \times \int_{- \infty}^{\infty} e^{-i \vec{k} \cdot \vec{r'} } \vec{k} \times \vec{f}(\vec{r'}) f^3r'

I am not sure where to go from here, but is everything up to this step valid?

Everything would be fine, except that I've made a huge mistake:

\hat{r} (i \vec{k} \cdot \hat{r}) = \hat{r} \times (\hat{r} \times i \vec{k}) + i \vec{k} (\hat{r} \cdot \hat{r}) = \hat{r} \times (\hat{r} \times i \vec{k}) + i \vec{k} = - (\hat{r} \times \hat{r}) \times i \vec{k} + i \vec{k} = 0 + i \vec{k} = i \vec{k}

Is clearly not true.

<br /> \vec{\nabla} \left( e^{-i \vec{k} \cdot \vec{r}} \right) = \hat{r}(-i\vec{k} \cdot \hat{r}) e^{-i \vec{k} \cdot \vec{r}} <br />

Must be used throughout the calculations.:frown:
 
  • #33
how come this is not true:

\hat{r} (i \vec{k} \cdot \hat{r}) = \hat{r} \times (\hat{r} \times i \vec{k}) + i \vec{k} (\hat{r} \cdot \hat{r}) = \hat{r} \times (\hat{r} \times i \vec{k}) + i \vec{k} = - (\hat{r} \times \hat{r}) \times i \vec{k} + i \vec{k} = 0 + i \vec{k} = i \vec{k}

Doesnt that just mean: \vec{\nabla} \left( e^{-i \vec{k} \cdot \vec{r}} \right) = -i \vec{k} e^{-i \vec{k} \cdot \vec{r}}

which is what has been used
 
  • #34
LocationX said:
how come this is not true:

\hat{r} (i \vec{k} \cdot \hat{r}) = \hat{r} \times (\hat{r} \times i \vec{k}) + i \vec{k} (\hat{r} \cdot \hat{r}) = \hat{r} \times (\hat{r} \times i \vec{k}) + i \vec{k} = - (\hat{r} \times \hat{r}) \times i \vec{k} + i \vec{k} = 0 + i \vec{k} = i \vec{k}

Doesnt that just mean: \vec{\nabla} \left( e^{-i \vec{k} \cdot \vec{r}} \right) = -i \vec{k} e^{-i \vec{k} \cdot \vec{r}}

which is what has been used

It is only true for the VERY special case that \vec{k}=k\hat{r} when \vec{k} points in a different direction, it is clearly false. And since we are integrating over all possible \hat{r} we can't possibly choose a coordinate system where k always points in the same direction as r.
 
  • #35
I think we are okay...

\vec{\nabla} \left( e^{-i \vec{k} \cdot \vec{r}} \right) = \frac{d}{dr_x} \left( e^{-i k_x r_x} e^{-i k_y r_y} e^{-i k_z r_z} \right) +\frac{d}{dr_y} \left( e^{-i k_x r_x} e^{-i k_y r_y} e^{-i k_z r_z} \right) +\frac{d}{dr_z} \left( e^{-i k_x r_x} e^{-i k_y r_y} e^{-i k_z r_z} \right)

= -ik_x e^{-i \vec{k} \cdot \vec{r}} - i k_y e^{-i \vec{k} \cdot \vec{r}} - i k_z e^{-i \vec{k} \cdot \vec{r}}

= -i \vec{k} e^{-i \vec{k} \cdot \vec{r}}
 
  • #36
LocationX said:
I think we are okay...

\vec{\nabla} \left( e^{-i \vec{k} \cdot \vec{r}} \right) = \frac{d}{dr_x} \left( e^{-i k_x r_x} e^{-i k_y r_y} e^{-i k_z r_z} \right) +\frac{d}{dr_y} \left( e^{-i k_x r_x} e^{-i k_y r_y} e^{-i k_z r_z} \right) +\frac{d}{dr_z} \left( e^{-i k_x r_x} e^{-i k_y r_y} e^{-i k_z r_z} \right)

= -ik_x e^{-i \vec{k} \cdot \vec{r}} - i k_y e^{-i \vec{k} \cdot \vec{r}} - i k_z e^{-i \vec{k} \cdot \vec{r}}

= -i \vec{k} e^{-i \vec{k} \cdot \vec{r}}

Yes, your right...phew!...Unfortunately there is still a problem in your \vec{f_{\perp}}(\vec{k}) somewhere and I haven't been able to pinpoint it yet. Your essentially getting

\hat{k} \times \hat{k} \times \vec{f}(\vec{k})

which would be zero. I think the answer is supposed to be :


\hat{k} \times \vec{f}(\vec{k})

so that \vec{f_{\perp}}(\vec{k}) pulls out the component of \vec{f}(\vec{k}) perpenciular to \vec{k}.
 
  • #37
why are we allowed to do this:

\frac{i\vec{k}}{4 \pi} \times \int_{- \infty}^{\infty} e^{i \vec{k} \cdot \vec{r}} \left( \int_{- \infty}^{\infty} \frac{\widehat{(\vec{r}-\vec{r} )}}{|\vec{r}- \vec{r&#039;} |^2 } \times \vec{f}(\vec{r&#039;}) d^3r&#039; \right) d^3r = \frac{i\vec{k}}{4 \pi} \times \int_{- \infty}^{\infty} \left( \int_{- \infty}^{\infty} e^{i \vec{k} \cdot \vec{r}} \frac{\widehat{(\vec{r}-\vec{r} )}}{|\vec{r}- \vec{r&#039;} |^2 } d^3r \right) \times \vec{f}(\vec{r&#039;}) d^3r&#039;
 
  • #38
LocationX said:
why are we allowed to do this:

\frac{i\vec{k}}{4 \pi} \times \int_{- \infty}^{\infty} e^{i \vec{k} \cdot \vec{r}} \left( \int_{- \infty}^{\infty} \frac{\widehat{(\vec{r}-\vec{r} )}}{|\vec{r}- \vec{r&#039;} |^2 } \times \vec{f}(\vec{r&#039;}) d^3r&#039; \right) d^3r = \frac{i\vec{k}}{4 \pi} \times \int_{- \infty}^{\infty} \left( \int_{- \infty}^{\infty} e^{i \vec{k} \cdot \vec{r}} \frac{\widehat{(\vec{r}-\vec{r} )}}{|\vec{r}- \vec{r&#039;} |^2 } d^3r \right) \times \vec{f}(\vec{r&#039;}) d^3r&#039;

I'm pretty sure that this part is fine:
e^{i\vec{k} \cdot \vec{r}}
is constant over r&#039; and so you can pull it inside the inner intgral.

You can then change the order of integration, integrating first over r and then r&#039;

and \vec{f}(\vec{r&#039;}) is constant over r so the \times \vec{f}(\vec{r&#039;}) can be pulled out of the integral over r

However, I still can't find the error. :confused:
 
  • #39
There's no problem.

\hat{k} \times \hat{k} \times \vec{f}(\vec{k}) = \hat{k}(\hat{k} \cdot \vec{f}) - \vec{f} \left|\hat{k}\right|^2 = \vec{f_{\perp}} - \vec{f}

which is the negative of the transverse component.

You're only missing a minus sign somewhere.
 
Last edited:
  • #40
chenel said:
There's no problem.

\hat{k} \times \hat{k} \times \vec{f}(\vec{k}) = \hat{k}(\hat{k} \cdot \vec{f}) - \vec{f} \left|\hat{k}\right|^2 = \vec{f_{\perp}} - \vec{f}

which is the negative of the transverse component.

You're only missing a minus sign somewhere.

Wow, I can't believe I thought \hat{k} \times (\hat{k} \times \vec{f}(\vec{k}))=0. I shouldn't help people with there homework so late at night.:redface:
 
  • #41
Whoops, what I meant was

\hat{k} \times \hat{k} \times \vec{f}(\vec{k}) = \hat{k}(\hat{k} \cdot \vec{f}) - \vec{f} \left|\hat{k}\right|^2 = \vec{f_{\parallel}} - \vec{f}

Note that it's \vec{f} minus its LONGITUDINAL component that makes the the transverse component.

@gabbagabbahey: oh well. you did a lot of good stuff -- I guess we can take one mistake :)
 
  • #42
I think i found the missing negative... let me try and wrap things up. Thank you again for all the help.

u \vec{\nabla} v = \vec{\nabla} (uv) - v \vec{\nabla} u

\int_{- \infty}^{\infty} e^{i \vec{k} \cdot \vec{r}} \vec{\nabla} \left( \frac{-1}{|\vec{r}- \vec{r&#039;} | } \right) d^3r = \int_{- \infty}^{\infty} \vec{\nabla}\left( e^{i \vec{k} \cdot \vec{r}}} \frac{-1}{|\vec{r}- \vec{r&#039;} | } \right) d^3r - \int_{- \infty}^{\infty} \left( \frac{-1}{|\vec{r}- \vec{r&#039;} | } \right) \vec{\nabla} e^{i \vec{k} \cdot \vec{r}}

= \int_{- \infty}^{\infty} \frac{ i \vec{k} e^{i \vec{k} \cdot \vec{r}}} {|\vec{r}- \vec{r&#039;} |} d^3r

I had = \int_{- \infty}^{\infty} \frac{ - i \vec{k} e^{i \vec{k} \cdot \vec{r}}} {|\vec{r}- \vec{r&#039;} |} d^3r

Starting from post 31 including the negative sign, we have:

= \frac{\vec{k}}{{k^2}} \times \int_{- \infty}^{\infty} (-e^{-i \vec{k} \cdot \vec{r&#039;} }) \vec{k} \times \vec{f}(\vec{r&#039;}) d^3r&#039;

= \frac{\vec{k}}{k^2} \times \vec{k} \times \int_{- \infty}^{\infty} (-e^{-i \vec{k} \cdot \vec{r&#039;} }) \vec{f}(\vec{r&#039;}) d^3r&#039;

= \frac{\vec{k}}{k^2} \times \vec{k} \times - \vec{f}(\vec{k})

=\frac{\vec{k}}{k^2} \times \vec{k} \times - \vec{f}(\vec{k})

=\frac{- \hat{k}(\hat{k} \cdot \vec{f}(\vec{k}))}{k^2} + \frac{ \vec{f}(\vec{k}) \left|\hat{k}\right|^2}{k^2}

= \frac{- \vec{f_{\parallel}}(\vec{k}) + \vec{f}(\vec{k})}{k^2}


Does the k^2 belong there?
 
Last edited:
  • #43
LocationX said:
Does the k^2 belong there?

Nope. Be careful: you're mixing \hat{k}'s and \vec{k}'s with abandon! Remember that
\hat{k} = \frac{\vec{k}}{k}
... that should straighten you out.
 
  • #44
sorry, i still do not see where i have mixed the khat and kvector
 
  • #45
actually, i think i got it... thank you.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
3K
Replies
1
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
577
  • · Replies 32 ·
2
Replies
32
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
8
Views
2K