Fourier transform and vector function

The first integral is now recognized as the surface integral of a vector field over a closed surface which encloses the origin. Since \vec{f}(\vec{r'}) \rightarrow 0 as r' \rightarrow \infty, this surface integral vanishes, leaving us with:\vec{f_{\parallel}} (\vec{k}) = - \frac{i \vec{k}}{4 \pi} \int_{- \infty}^{\infty} \vec{f}
  • #36
LocationX said:
I think we are okay...

[tex] \vec{\nabla} \left( e^{-i \vec{k} \cdot \vec{r}} \right) = \frac{d}{dr_x} \left( e^{-i k_x r_x} e^{-i k_y r_y} e^{-i k_z r_z} \right) +\frac{d}{dr_y} \left( e^{-i k_x r_x} e^{-i k_y r_y} e^{-i k_z r_z} \right) +\frac{d}{dr_z} \left( e^{-i k_x r_x} e^{-i k_y r_y} e^{-i k_z r_z} \right) [/tex]

[tex]= -ik_x e^{-i \vec{k} \cdot \vec{r}} - i k_y e^{-i \vec{k} \cdot \vec{r}} - i k_z e^{-i \vec{k} \cdot \vec{r}} [/tex]

[tex] = -i \vec{k} e^{-i \vec{k} \cdot \vec{r}} [/tex]

Yes, your right...phew!...Unfortunately there is still a problem in your [tex]\vec{f_{\perp}}(\vec{k})[/tex] somewhere and I haven't been able to pinpoint it yet. Your essentially getting

[tex]\hat{k} \times \hat{k} \times \vec{f}(\vec{k})[/tex]

which would be zero. I think the answer is supposed to be :


[tex]\hat{k} \times \vec{f}(\vec{k})[/tex]

so that [tex]\vec{f_{\perp}}(\vec{k})[/tex] pulls out the component of [tex]\vec{f}(\vec{k})[/tex] perpenciular to [tex]\vec{k}[/tex].
 
Physics news on Phys.org
  • #37
why are we allowed to do this:

[tex]\frac{i\vec{k}}{4 \pi} \times \int_{- \infty}^{\infty} e^{i \vec{k} \cdot \vec{r}} \left( \int_{- \infty}^{\infty} \frac{\widehat{(\vec{r}-\vec{r} )}}{|\vec{r}- \vec{r'} |^2 } \times \vec{f}(\vec{r'}) d^3r' \right) d^3r = \frac{i\vec{k}}{4 \pi} \times \int_{- \infty}^{\infty} \left( \int_{- \infty}^{\infty} e^{i \vec{k} \cdot \vec{r}} \frac{\widehat{(\vec{r}-\vec{r} )}}{|\vec{r}- \vec{r'} |^2 } d^3r \right) \times \vec{f}(\vec{r'}) d^3r'[/tex]
 
  • #38
LocationX said:
why are we allowed to do this:

[tex]\frac{i\vec{k}}{4 \pi} \times \int_{- \infty}^{\infty} e^{i \vec{k} \cdot \vec{r}} \left( \int_{- \infty}^{\infty} \frac{\widehat{(\vec{r}-\vec{r} )}}{|\vec{r}- \vec{r'} |^2 } \times \vec{f}(\vec{r'}) d^3r' \right) d^3r = \frac{i\vec{k}}{4 \pi} \times \int_{- \infty}^{\infty} \left( \int_{- \infty}^{\infty} e^{i \vec{k} \cdot \vec{r}} \frac{\widehat{(\vec{r}-\vec{r} )}}{|\vec{r}- \vec{r'} |^2 } d^3r \right) \times \vec{f}(\vec{r'}) d^3r'[/tex]

I'm pretty sure that this part is fine:
[tex]e^{i\vec{k} \cdot \vec{r}}[/tex]
is constant over [tex]r'[/tex] and so you can pull it inside the inner intgral.

You can then change the order of integration, integrating first over [tex]r[/tex] and then [tex]r'[/tex]

and [tex]\vec{f}(\vec{r'})[/tex] is constant over [tex]r[/tex] so the [tex] \times \vec{f}(\vec{r'})[/tex] can be pulled out of the integral over [tex]r[/tex]

However, I still can't find the error. :confused:
 
  • #39
There's no problem.

[tex]\hat{k} \times \hat{k} \times \vec{f}(\vec{k}) = \hat{k}(\hat{k} \cdot \vec{f}) - \vec{f} \left|\hat{k}\right|^2 = \vec{f_{\perp}} - \vec{f}[/tex]

which is the negative of the transverse component.

You're only missing a minus sign somewhere.
 
Last edited:
  • #40
chenel said:
There's no problem.

[tex]\hat{k} \times \hat{k} \times \vec{f}(\vec{k}) = \hat{k}(\hat{k} \cdot \vec{f}) - \vec{f} \left|\hat{k}\right|^2 = \vec{f_{\perp}} - \vec{f}[/tex]

which is the negative of the transverse component.

You're only missing a minus sign somewhere.

Wow, I can't believe I thought [tex]\hat{k} \times (\hat{k} \times \vec{f}(\vec{k}))=0[/tex]. I shouldn't help people with there homework so late at night.:redface:
 
  • #41
Whoops, what I meant was

[tex]\hat{k} \times \hat{k} \times \vec{f}(\vec{k}) = \hat{k}(\hat{k} \cdot \vec{f}) - \vec{f} \left|\hat{k}\right|^2 = \vec{f_{\parallel}} - \vec{f}[/tex]

Note that it's [tex]\vec{f}[/tex] minus its LONGITUDINAL component that makes the the transverse component.

@gabbagabbahey: oh well. you did a lot of good stuff -- I guess we can take one mistake :)
 
  • #42
I think i found the missing negative... let me try and wrap things up. Thank you again for all the help.

[tex]u \vec{\nabla} v = \vec{\nabla} (uv) - v \vec{\nabla} u[/tex]

[tex]\int_{- \infty}^{\infty} e^{i \vec{k} \cdot \vec{r}} \vec{\nabla} \left( \frac{-1}{|\vec{r}- \vec{r'} | } \right) d^3r = \int_{- \infty}^{\infty} \vec{\nabla}\left( e^{i \vec{k} \cdot \vec{r}}} \frac{-1}{|\vec{r}- \vec{r'} | } \right) d^3r - \int_{- \infty}^{\infty} \left( \frac{-1}{|\vec{r}- \vec{r'} | } \right) \vec{\nabla} e^{i \vec{k} \cdot \vec{r}} [/tex]

[tex]= \int_{- \infty}^{\infty} \frac{ i \vec{k} e^{i \vec{k} \cdot \vec{r}}} {|\vec{r}- \vec{r'} |} d^3r [/tex]

I had [tex]= \int_{- \infty}^{\infty} \frac{ - i \vec{k} e^{i \vec{k} \cdot \vec{r}}} {|\vec{r}- \vec{r'} |} d^3r [/tex]

Starting from post 31 including the negative sign, we have:

[tex]= \frac{\vec{k}}{{k^2}} \times \int_{- \infty}^{\infty} (-e^{-i \vec{k} \cdot \vec{r'} }) \vec{k} \times \vec{f}(\vec{r'}) d^3r'[/tex]

[tex]= \frac{\vec{k}}{k^2} \times \vec{k} \times \int_{- \infty}^{\infty} (-e^{-i \vec{k} \cdot \vec{r'} }) \vec{f}(\vec{r'}) d^3r'[/tex]

[tex] = \frac{\vec{k}}{k^2} \times \vec{k} \times - \vec{f}(\vec{k}) [/tex]

[tex] =\frac{\vec{k}}{k^2} \times \vec{k} \times - \vec{f}(\vec{k}) [/tex]

[tex]=\frac{- \hat{k}(\hat{k} \cdot \vec{f}(\vec{k}))}{k^2} + \frac{ \vec{f}(\vec{k}) \left|\hat{k}\right|^2}{k^2} [/tex]

[tex] = \frac{- \vec{f_{\parallel}}(\vec{k}) + \vec{f}(\vec{k})}{k^2} [/tex]


Does the k^2 belong there?
 
Last edited:
  • #43
LocationX said:
Does the k^2 belong there?

Nope. Be careful: you're mixing [tex]\hat{k}[/tex]'s and [tex]\vec{k}[/tex]'s with abandon! Remember that
[tex]\hat{k} = \frac{\vec{k}}{k}[/tex]
... that should straighten you out.
 
  • #44
sorry, i still do not see where i have mixed the khat and kvector
 
  • #45
actually, i think i got it... thank you.
 

Similar threads

Replies
1
Views
430
  • Advanced Physics Homework Help
Replies
3
Views
450
  • Advanced Physics Homework Help
Replies
1
Views
493
  • Advanced Physics Homework Help
Replies
2
Views
776
  • Advanced Physics Homework Help
Replies
8
Views
1K
  • Advanced Physics Homework Help
Replies
1
Views
718
  • Advanced Physics Homework Help
Replies
13
Views
1K
  • Advanced Physics Homework Help
Replies
13
Views
2K
  • Advanced Physics Homework Help
Replies
3
Views
875
  • Advanced Physics Homework Help
Replies
1
Views
936
Back
Top