LocationX
- 141
- 0
I used:
u \vec{\nabla} v = \vec{\nabla} (uv) - v \vec{\nabla} u
Skipping some steps, the integral becomes:
\int_{- \infty}^{\infty} e^{i \vec{k} \cdot \vec{r}} \vec{\nabla} \left( \frac{-1}{|\vec{r}- \vec{r'} | } \right) d^3r = \int_{- \infty}^{\infty} \frac{ -i \vec{k} e^{i \vec{k} \cdot \vec{r}}} {|\vec{r}- \vec{r'} |} d^3r
= - \frac{i 4 \pi \vec{k}}{k^2} e^{-i \vec{k} \cdot \vec{r'}}
thus:
\frac{i\vec{k}}{4 \pi} \times \int_{- \infty}^{\infty} \left( \int_{- \infty}^{\infty} e^{i \vec{k} \cdot \vec{r}} \frac{\widehat{(\vec{r}-\vec{r} )}}{|\vec{r}- \vec{r'} |^2 } d^3r \right) \times \vec{f}(\vec{r'}) d^3r' = \frac{i\vec{k}}{4 \pi} \times \int_{- \infty}^{\infty} \left( \frac{- i 4 \pi \vec{k}}{k^2} e^{-i \vec{k} \cdot \vec{r'} } \times \vec{f}(\vec{r'}) \right) d^3r'
= \frac{\vec{k}}{{k^2}} \times \int_{- \infty}^{\infty} e^{-i \vec{k} \cdot \vec{r'} } \vec{k} \times \vec{f}(\vec{r'}) f^3r'
I am not sure where to go from here, but is everything up to this step valid?
u \vec{\nabla} v = \vec{\nabla} (uv) - v \vec{\nabla} u
Skipping some steps, the integral becomes:
\int_{- \infty}^{\infty} e^{i \vec{k} \cdot \vec{r}} \vec{\nabla} \left( \frac{-1}{|\vec{r}- \vec{r'} | } \right) d^3r = \int_{- \infty}^{\infty} \frac{ -i \vec{k} e^{i \vec{k} \cdot \vec{r}}} {|\vec{r}- \vec{r'} |} d^3r
= - \frac{i 4 \pi \vec{k}}{k^2} e^{-i \vec{k} \cdot \vec{r'}}
thus:
\frac{i\vec{k}}{4 \pi} \times \int_{- \infty}^{\infty} \left( \int_{- \infty}^{\infty} e^{i \vec{k} \cdot \vec{r}} \frac{\widehat{(\vec{r}-\vec{r} )}}{|\vec{r}- \vec{r'} |^2 } d^3r \right) \times \vec{f}(\vec{r'}) d^3r' = \frac{i\vec{k}}{4 \pi} \times \int_{- \infty}^{\infty} \left( \frac{- i 4 \pi \vec{k}}{k^2} e^{-i \vec{k} \cdot \vec{r'} } \times \vec{f}(\vec{r'}) \right) d^3r'
= \frac{\vec{k}}{{k^2}} \times \int_{- \infty}^{\infty} e^{-i \vec{k} \cdot \vec{r'} } \vec{k} \times \vec{f}(\vec{r'}) f^3r'
I am not sure where to go from here, but is everything up to this step valid?
Last edited:
