Fourier Transform of a Free Induction Decay Signal

wolski888
Messages
25
Reaction score
0

Homework Statement



S(t) = S(0)e^{-i \pi f_{o}t} e^{-t/T^{*}_{2}}, 0 \leq t < \infty
S(t) = 0, t < 0

Show that the spectrum G(f) corresponding to this signal is given by:

G(f) = S(0) { \frac{T^{*}_{2}}{ 1 + [2 \pi (f- f_{o} )T^{*}_{2}]^{2}} + \frac{i2 \pi (f- f_{o} ) (T^{*}_{2})^{2}}{ 1 + [2 \pi (f- f_{o} )T^{*}_{2}]^{2}} }

Homework Equations


G(f) = \int^{\infty}_{- \infty} S(t) e^{i 2 \pi f t} dt

The Attempt at a Solution



G(f) = \int^{\infty}_{- \infty} S(t) e^{i 2 \pi f t} dt

= \int^{\infty}_{- \infty} S(0) e^{-i 2 \pi f_{o}t} e^{-t/T^{*}_{2}}e^{i 2 \pi f t} dt

= S(0) \int^{\infty}_{0} e^{i 2 \pi (f - f_{o})t} e^{-t/T^{*}_{2}} dt * S(t) is 0 when t is less than 0, so took integral from infity to 0. Took out S(0) and combined the exponents.

= S(0) \int^{\infty}_{0} e^{i 2 \pi (f - f_{o})t - t/T^{*}_{2}} dt *Combined the exponents

= S(0) \int^{\infty}_{0} e^{t[i 2 \pi (f - f_{o}) - 1/T^{*}_{2}]} dt *factored out t. Now all the stuff in the square brackets are basically a constant.

= S(0) [ \frac{e^{t[i 2 \pi (f - f_{o}) - 1/T^{*}_{2}]}}{i 2 \pi (f - f_{o}) - 1/T^{*}_{2}} ]^{\infty}_{0} *This is what I get after integrating. But as t goes to infinity, so does the fraction. Which I think makes sense since its a continuous spectrum. So maybe integrating from 0 to T2*? That way it looks like I am getting closer to the answer. Is my integration wrong?
 
Physics news on Phys.org
And I apologize if this is not in the right section.
 
Nevermind, I got it.
 
To solve this, I first used the units to work out that a= m* a/m, i.e. t=z/λ. This would allow you to determine the time duration within an interval section by section and then add this to the previous ones to obtain the age of the respective layer. However, this would require a constant thickness per year for each interval. However, since this is most likely not the case, my next consideration was that the age must be the integral of a 1/λ(z) function, which I cannot model.
Back
Top