maverick280857
- 1,774
- 5
Hi. I have a question regarding the continuous time Fourier Transform of an input signal:
x(t) \rightarrow X(j\omega)
then
\int_{-\infty}^{t}x(\tau)d\tau \rightarrow \frac{X(j\omega)}{j\omega} + \pi X(0)\delta(\omega)
but if I want to write it in terms of f = \frac{\omega}{2\pi}, should it be:
\int_{-\infty}^{t}x(\tau)d\tau \rightarrow \frac{X(j\omega)}{j\omega} + \frac{1}{2}X(0)\delta(f)
How does the \pi get replaced by \frac{1}{2} here?
x(t) \rightarrow X(j\omega)
then
\int_{-\infty}^{t}x(\tau)d\tau \rightarrow \frac{X(j\omega)}{j\omega} + \pi X(0)\delta(\omega)
but if I want to write it in terms of f = \frac{\omega}{2\pi}, should it be:
\int_{-\infty}^{t}x(\tau)d\tau \rightarrow \frac{X(j\omega)}{j\omega} + \frac{1}{2}X(0)\delta(f)
How does the \pi get replaced by \frac{1}{2} here?