Nusc
- 752
- 2
Homework Statement
I need to find the Fourier Transform of this integro-differential equation:
<br /> \begin{subequations}<br /> \begin{eqnarray}<br /> \nonumber<br /> \dot{\hat{{\cal E}}}(t) &=& -\kappa \hat{{\cal E}}(t) + i g\int_{-\infty}^{\infty} d \Delta\; \hat{{\cal \rho}}(\Delta)\,( \hat{\sigma}_{ge,0}(t_{0},\Delta)e^{-(\gamma +i\Delta)(t-t_{0})} <br /> \nonumber\\<br /> & & + e^{-(\gamma + i\Delta)(t-t_{0})} ig\int_{t_{0}}^{t} d t' \hat{{\cal E}}(t')e^{(\gamma +i\Delta)(t-t')})<br /> \nonumber\\<br /> & & + \sqrt{2\kappa}\, \hat{{\cal E}}_{in}, \\<br /> \nonumber<br /> \end{eqnarray}<br /> \end{subequations}<br /> <br />
Homework Equations
<br /> \hat{{\cal E}}}(t) <br />
is just a function of t
The Attempt at a Solution
<br /> After applying the Fourier Transform,<br /> \begin{subequations}<br /> \begin{eqnarray}<br /> \omega \; \tilde{\hat{{\cal E}}}(\omega) &=& -\frac{\kappa}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{{\cal E}}(t)e^{-i\omega t} dt + ig\int_{-\infty}^{\infty} d \Delta\; \hat{{\cal \rho}}(\Delta)\, \hat{\sigma}_{ge,0}(t_{0},\Delta)e^{-(\gamma +i\Delta)(t-t_{0})}<br /> \nonumber\\<br /> & & - g^{2}e^{-(\gamma +i\Delta)(t-t_{0})}\int_{-\infty}^{\infty} d \Delta\; \hat{{\cal \rho}}(\Delta)\,\int_{t_{0}}^{t} d t' \hat{{\cal E}}(t')e^{(\gamma +i\Delta)(t-t')}<br /> + \sqrt{2\kappa}\, \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{{\cal E}}_{in}(t)e^{-i\omega t} dt, \nonumber\\ \nonumber<br /> \end{eqnarray}<br /> \end{subequations}<br /> <br />
is this correct?
Last edited: