OK, thanks. I have another question though. I tried this same thing but with the sin(at)/at.
Now, I turned the integral such that \[\int\limits_{ - \infty }^\infty {\frac{{Sin(at)}}{{at}}{e^{ - iwt}}dt} = {\mathop{\rm Im}\nolimits} \left( {\int\limits_{ - \infty }^\infty {\frac{{{e^{iat}}{e^{ - iwt}}}}{{at}}dt} } \right) = {\mathop{\rm Im}\nolimits} \left( {\int\limits_{ - \infty }^\infty {\frac{{{e^{i(a - w)t}}}}{{at}}dt} } \right) = {\mathop{\rm Im}\nolimits} \left( {\int\limits_{} {\frac{{{e^{i(a - w)z}}}}{{az}}dz} } \right)\].
Then, evualuating the integral \[{\int\limits_\gamma {\frac{{{e^{i(a - w)z}}}}{{az}}dz} }\] I arrive to the known result that it's equal to i\[\pi \]/a. Then the Fourier transform is \[\pi \]/a.
But the Fourier transform of sinc is a rectangular function. That means that there are values of w in which the Fourier transform equals the found value, and values of w in which it equals 0. Where do I see that?