Free particle wave function confusion.

AI Thread Summary
The discussion centers on the confusion regarding the wave function for a free particle in quantum mechanics. It clarifies that while free particles do not have stationary states and cannot be described by a discrete sum, they can be represented by a continuous integral of wave functions. The conversation also addresses why scattering states in a delta function potential can be expressed as a sum of stationary states, despite free particles being described differently. It highlights the distinction between bound states, which are discrete and correspond to lower energy levels, and free scattering states, which exhibit a continuous spectrum. The presence of a potential at x=0 influences the nature of the solutions, combining both bound and free states.
Oz123
Messages
29
Reaction score
0
Member reminded to use the homework template for posts in the homework sections of PF.
Hi! I'm currently studying Griffith's fantastic book on QM, and I'm confused for a bit about the wave function for a free particle.
Here's what I think so far; for a free particle, there are no stationary states, so therefore we can't solve the SE with
ψ(x)=Aeikx+Be-ikx

That is, we can't write a discrete sum. But We can have solutions as:

ψ(x,t)=∫dkφ(k)ei(kx-ωt)

I don't know if my understanding is correct, so please tell me so. Now, I assume that this understanding is correct and get to the question: If the solutions can only be the latter, then why was the solution from the book for the scattering states in the delta function potential a sum of stationary states and not the continuous sum? Also, why is it the same for the bound states if we are solving for the free particle when x<0 and x>0? Is it because it has a potential at x=0?
Thanks in advanced!
 
Physics news on Phys.org
Oz123 said:
Here's what I think so far; for a free particle, there are no stationary states, so therefore we can't solve the SE with
ψ(x)=Aeikx+Be-ikx
These functions do solve the Schrödinger equation, but they are not normalisable and therefore not actually in the relevant Hilbert space of square integrable functions.

Oz123 said:
If the solutions can only be the latter, then why was the solution from the book for the scattering states in the delta function potential a sum of stationary states and not the continuous sum?
Generally, in scattering theory, you will look at an in-state of definite momentum. Of course, the actual physical state is a superposition of such states and not a plane wave. However, in many cases, looking at just an incoming plane wave solution is a sufficiently accurate description.

Oz123 said:
Also, why is it the same for the bound states if we are solving for the free particle when x<0 and x>0? Is it because it has a potential at x=0?
Thanks in advanced!
In the case of a scattering potential, you will often have both bound and free states. The bound states correspond to energy levels with an energy lower than the energy at ##\pm\infty## and are generally discrete while the free scattering states show a continuous spectrum. In both cases you have to find the solutions to the Schrödinger equation in all of space.
 
  • Like
Likes Oz123
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top