Friction problem -- 2 blocks and a rope on an inclined plane

Click For Summary
SUMMARY

The discussion centers on a physics problem involving two blocks (2 kg aluminum and 6 kg copper) connected by a rope on a 30-degree inclined plane. The coefficients of static and dynamic friction for both materials are provided, with static friction for aluminum at 0.61 and for copper at 0.53. The calculated tension in the rope is established as 10N, but participants debate whether to use static or dynamic friction for tension calculations. The conclusion emphasizes that the actual tension can vary based on the system's setup, and the best approach is to calculate a range of possible tensions.

PREREQUISITES
  • Understanding of static and dynamic friction coefficients
  • Knowledge of Newton's laws of motion
  • Ability to perform vector decomposition of forces
  • Familiarity with basic physics equations, such as Ff=N*μ and G=m*g
NEXT STEPS
  • Study the principles of static and dynamic friction in detail
  • Learn about vector decomposition in physics problems
  • Explore tension calculations in systems with multiple forces
  • Investigate how environmental factors affect tension in physical setups
USEFUL FOR

Students studying physics, particularly those focusing on mechanics, as well as educators and tutors looking for practical examples of friction and tension in inclined plane scenarios.

iwan97
Messages
14
Reaction score
1

Homework Statement


Capture.PNG

So, these 2 blocks are connected by a rope. Aluminuim block is 2kg and copper is 6kg. They are kept in motionless state via some kind of mechanism on steel surface. θ is 30 degrees. I was given dynamic and static friction coefficient (Aluminium μs=0,61 i μd=0,47, Copper μs=0,53 i μd=0,36.
Question is will these blocks move after mechanism that keeps them motionless turns off and I have to calculate force of tension in the rope. Friction of that little pulley is 0.

Solution for rope tension is 10N.

Homework Equations


Ff=N*μ
G=m*g

The Attempt at a Solution



I found G1 and G2:
G1=19.62N
G2=58.86N

I also found G2x and G2y:
G2x=sinθ*G2=29.43N
G2y=cosθ*G2=50.97N

After that I calculated force of static and dynamic friction:
Fsf1=G1s=11.97N
Fdf1=G1d=9.22N

Fsf2=G2ys=27N
Fdf2=G2yd=18.35N

Unfortunately, this is as far as I got because I don't understand and don't know what to do next since I never had any problems with static friction.
I hope someone can help me out on this one :)
 
Last edited by a moderator:
Physics news on Phys.org
I think I may figured it out but I'm not 100% sure. So, if T=G2x-Fdf2 then T=11.08N. But it's not 10N like it says it should be. Also, should I use static friction or dynamic friction for calculating tension ?
 
iwan97 said:
Ff=N*μ
Static and kinetic friction are different. The static coefficient only sets an upper bound on the frictional force:
|Fd|=μdN
|Fs|≤μsN
This distinction is important.
iwan97 said:
should I use static friction or dynamic friction for calculating tension ?
You should use static if the surfaces do not slide over each other and dynamic if they do.
So the first step is to determine whether the system can be static. Suppose it is static and work out the forces on that basis.
 
haruspex said:
Static and kinetic friction are different. The static coefficient only sets an upper bound on the frictional force:
|Fd|=μdN
|Fs|≤μsN
This distinction is important.

You should use static if the surfaces do not slide over each other and dynamic if they do.
So the first step is to determine whether the system can be static. Suppose it is static and work out the forces on that basis.

Sorry, can you give me more info :). I have no idea were to start really.
 
iwan97 said:
Sorry, can you give me more info :). I have no idea were to start really.
What is the max frictional force on the block on the ramp?
If it does not slip, what is the minimum tension?
Can the frictional force on the other block supply that tension?
 
haruspex said:
What is the max frictional force on the block on the ramp?
If it does not slip, what is the minimum tension?
Can the frictional force on the other block supply that tension?

Well max friction should be Fsf2=G2ys=27N right ?
 
iwan97 said:
Well max friction should be Fsf2=G2ys=27N right ?
Yes, so what is the minimum tension to prevent that block slipping?

By the way, it is rarely a good idea to plug in numbers so soon. Far better to keep everything symbolic as long as possible. There are many advantages, not least for others trying to follow your working.
In the present problem, for example, you might find that you did not keep enough significant digits to be able to resolve whether it is static, and you'll have to go all through it again.
 
haruspex said:
Yes, so what is the minimum tension to prevent that block slipping?

T=G2x-Fsf2=29.43-27=2.43N
 
iwan97 said:
T=G2x-Fsf2=29.43-27=2.43N
Ok. If that is the tension, will the left hand block slip?
 
  • #10
haruspex said:
Ok. If that is the tension, will the left hand block slip?
I don't think so...
Fsf1=G1s=11.97N
Friction is higher than tension force pulling left block so it shouldn't slip right ?
 
  • #11
iwan97 said:
I don't think so...
Fsf1=G1s=11.97N
Friction is higher than tension force pulling left block so it shouldn't slip right ?
Not exactly. As I pointed out, the static friction equation only gives you an upper bound for the frictional force. But you are right there is 11.97N available. So that's the first part answered.
The actual tension is problematic. We have only found the minimum tension. At maximum tension, either the left hand block is about to slip to the right or the right hand block is about to slip up the slope! The maximum tension for equilibrium is the lower of the two.
In practice, the actual tension depends on how the set-up was done. E.g. to get max tension we could start with a warm environment and cool it down. As the wire tries to shrink the tension increases until the left block slips right or the right block slips left. Or we could get this higher tension just by holding the wire a bit stretched while we place the blocks on the slope.
In short, there is no way to answer the question of tension as posted. The best you can do is to calculate a range.
 
  • #12
haruspex said:
Not exactly. As I pointed out, the static friction equation only gives you an upper bound for the frictional force. But you are right there is 11.97N available. So that's the first part answered.
The actual tension is problematic. We have only found the minimum tension. At maximum tension, either the left hand block is about to slip to the right or the right hand block is about to slip up the slope! The maximum tension for equilibrium is the lower of the two.
In practice, the actual tension depends on how the set-up was done. E.g. to get max tension we could start with a warm environment and cool it down. As the wire tries to shrink the tension increases until the left block slips right or the right block slips left. Or we could get this higher tension just by holding the wire a bit stretched while we place the blocks on the slope.
In short, there is no way to answer the question of tension as posted. The best you can do is to calculate a range.
Why does it say 10N for answer then?
 
  • #13
iwan97 said:
Why does it say 10N for answer then?
I have no idea.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
19
Views
4K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 33 ·
2
Replies
33
Views
4K
Replies
5
Views
2K
Replies
8
Views
3K
Replies
46
Views
5K
  • · Replies 7 ·
Replies
7
Views
7K
Replies
19
Views
2K