- #1
genxium
- 141
- 2
Homework Statement
This problem came when I was learning the Poisson's equation (refer to http://farside.ph.utexas.edu/teaching/em/lectures/node31.html). when it came to the step to find the Green's function [itex]G[/itex] which satisfies [itex]\nabla^2 \cdot G(\textbf{r}, \textbf{r}') = \delta(\textbf{r}-\textbf{r}')[/itex] with [itex]|G| \rightarrow 0[/itex] when [itex]|\textbf{r}| \rightarrow 0[/itex], the tutorial I refer to simply yields [itex]G(\textbf{r}, \textbf{r}') = -\frac{1}{4\pi}\frac{1}{|\textbf{r} - \textbf{r}'|}[/itex].
I understand that [itex]\int_{V} \nabla^2 \cdot \frac{1}{|\textbf{r} - \textbf{r}'|} dV= \int_{S=\partial V} \nabla \cdot \frac{1}{|\textbf{r}-\textbf{r}'|} \cdot d\textbf{S} = \int_{S=\partial V} -\frac{\textbf{r}-\textbf{r}'}{|\textbf{r}-\textbf{r}'|^3} \cdot d\textbf{S} = -4\pi[/itex], by assuming that [itex]V[/itex] is a unit sphere located at [itex]\textbf{r}'[/itex]. Thus [itex]G(\textbf{r}, \textbf{r}') = -\frac{1}{4\pi}\frac{1}{|\textbf{r} - \textbf{r}'|}[/itex] COULD BE ONE SOLUTION to the equation, but what about proof of the uniqueness? Is this the only solution to the equation [itex]\nabla^2 \cdot G(\textbf{r}, \textbf{r}') = \delta(\textbf{r}-\textbf{r}')[/itex] with [itex]|G| \rightarrow 0[/itex] when [itex]|\textbf{r}| \rightarrow 0[/itex]?
Homework Equations
[tex]\textbf{r} = x \cdot \textbf{i} + y \cdot \textbf{j} + z \cdot \textbf{k}[/tex]
[tex]\textbf{r}' = x' \cdot \textbf{i} + y' \cdot \textbf{j} + z' \cdot \textbf{k}[/tex]
[tex]\nabla = \frac{\partial}{\partial x} \cdot \textbf{i} + \frac{\partial}{\partial y} \cdot \textbf{j} + \frac{\partial}{\partial z} \cdot \textbf{k}[/tex]
[tex]\delta(\textbf{r}) = \delta(x) \cdot \delta(y) \cdot \delta(z)[/tex]
The Attempt at a Solution
Stated above.