Functional variation of Lagrangian densities

Cinquero
Messages
31
Reaction score
0
Why do we treat a scalar field phi and its derivatives as being independent when trying to find a stationary solution for the action?

Doesn't that give too general solutions?

Where does the restriction that (d_mu phi) is dependent on phi come back in?
 
Physics news on Phys.org
That's the idea. We take things as general as possible. The Lagrangian needs to be a function of positions and velocities treated as independent variables as to allow the passing to the Hamiltonian formalism on one hand and account for the correct description of dynamics on the other. I mean we usually see the lagrangian as the KE-PE function and the KE part involves time derivatives of position (generalized velocities), while the PE part is allowed to depend only on "x" and "t", and not on \frac{dx}{dt}.

Setting things so general we have to use the fundamental variational principle of Hamilton which selects the physically realizable mechanical states,which are of course the solutions of Lagrange equations.

Daniel.
 
Toponium is a hadron which is the bound state of a valance top quark and a valance antitop quark. Oversimplified presentations often state that top quarks don't form hadrons, because they decay to bottom quarks extremely rapidly after they are created, leaving no time to form a hadron. And, the vast majority of the time, this is true. But, the lifetime of a top quark is only an average lifetime. Sometimes it decays faster and sometimes it decays slower. In the highly improbable case that...
I'm following this paper by Kitaev on SL(2,R) representations and I'm having a problem in the normalization of the continuous eigenfunctions (eqs. (67)-(70)), which satisfy \langle f_s | f_{s'} \rangle = \int_{0}^{1} \frac{2}{(1-u)^2} f_s(u)^* f_{s'}(u) \, du. \tag{67} The singular contribution of the integral arises at the endpoint u=1 of the integral, and in the limit u \to 1, the function f_s(u) takes on the form f_s(u) \approx a_s (1-u)^{1/2 + i s} + a_s^* (1-u)^{1/2 - i s}. \tag{70}...
Back
Top