Fundamental noise limit for an ideal photodetector

Dustgil
Messages
42
Reaction score
0

Homework Statement


As the title says, I'm trying to calculate the fundamental noise limit for an ideal photodetector, by specifically looking at the rate of incidence of annihilation of photons (and subsequent excitation of conducting electrons) on the detection surface. Since I'm looking for the theoretical minimum, the quantum efficiency is 100% (taken care of by the ideal nature of the photodetector) and each incident photon excites an electron into functioning as a conducting electron.

Homework Equations

The Attempt at a Solution



So, to describe the generation and annihilation of photons, we need operators. If we have a state described by n particles, then the generation operator acts on that state to create a state with n+1 particles. Likewise, the annihilation operator acts on the n state to produce a state with n-1 particles, UNLESS the n state is the state with zero particles. In that case, the operation produces the n state again, corresponding to the zero state.

This suggests the operators can be represented in the ladder operator framework. Then the properties of the operators should be the same as for all ladder operators. The two operators are then adjoints of each other, and

b|\psi_{n}\rangle=\sqrt{n+1}|\psi_{n+1}\rangle
b^{\dagger}|\psi_{n}\rangle=\sqrt{n}|\psi_{n-1}\rangle

where the nth state corresponds to the number of particles, n.

The commutator for ladder operators is 1, for example:

[b,b^{\dagger}]|n\rangle=bb^{\dagger}|n\rangle-b^{\dagger}b|n\rangle= [(n+1)-(n)]|n\rangle=|n\rangle

Then the uncertainty between the two operators is:

\sigma_{b}^{2}\sigma_{b^{\dagger}}^{2}=(\frac{1}{2i}\langle[b,b^{\dagger}]\rangle)^{2}=-\frac{1}{4}

THAT doesn't seem right...I was thinking of establishing an minimum possible uncertainty between the creation and annihilation of photons and in that way establish a minimum noise limit for photodetection. Where have I gone wrong? This is a first-semester QM project so I'm hoping I didn't bite off more than I can chew.
 
Physics news on Phys.org
How do you define the uncertainty of non-hermitian operators like creation and annihilation operators?
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top