- #1

Von Neumann

- 101

- 4

There are two people. Person A picks three numbers from 0-99. Person B guesses which three numbers that person A has picked. Then, person A gives the dot product of his picked numbers with person B's guessed numbers. The question is how could person B figure out person A's selected numbers in three guesses. Even more challenging is to provide a solution that allows person B to guess the numbers in one guess.

I have a solution to the first part:

Think of person A and person B as having their guess put into vectors [itex]\vec{a}[/itex]=(a[itex]_{1}[/itex], a[itex]_{2}[/itex], a[itex]_{3}[/itex]) and [itex]\vec{b}[/itex]=(b[itex]_{1}[/itex], b[itex]_{2}[/itex], b[itex]_{3}[/itex]) respectively. To get the corresponding component a[itex]_{1}[/itex], person B should select the components (1,0,0) so the dot product will yield a[itex]_{1}[/itex]. Same for a[itex]_{2}[/itex] and a[itex]_{3}[/itex]. Simple enough.

The next part I am stumped. The only clue I was given is that person B's three guesses are not restricted between 0-99. Anyone have any insight?