Proving the Trace of Gamma Matrices with (Anti-)Communtation Rules

WarnK
Messages
30
Reaction score
0

Homework Statement


Show that tr(\gamma^{\mu}\gamma^{\nu}\gamma^{5}) = 0


Homework Equations


(anti-)commutation rules for the gammas, trace is cyclic


The Attempt at a Solution


I can do
tr(\gamma^{\mu}\gamma^{\nu}\gamma^{5}) = -tr(\gamma^{\mu}\gamma^{5}\gamma^{\nu}) = - tr(\gamma^{\nu}\gamma^{\mu}\gamma^{5})
and so on, but I don't see how that helps me. Any suggestions?
 
Physics news on Phys.org
You've used the first of your "relevant equations", now use the second.
 
If I continue like this
tr(\gamma^{\mu}\gamma^{\nu}\gamma^{5}) = - tr(\gamma^{\nu}\gamma^{\mu}\gamma^{5}) = - tr( (2\eta^{\nu \mu} - \gamma^{\mu}\gamma^{\nu} )\gamma^{5}) = tr(\gamma^{\mu}\gamma^{\nu}\gamma^{5}) - tr(2\eta^{\nu \mu} \gamma^{5})
which I guess means that tr(\gamma^{5})=0
 
Oops, I didn't notice that you've already gotten as far as you need to. You've shown that your original expression is equal to minus itself. What is the only number with this property?
 
But, I have \gamma^{\mu} and \gamma^{\nu} in a different order, and the entire point is that they don't commute?
 
Last edited:
Oops, sorry, I screwed up again.

To do this one, I think you need to insert (gamma^rho)^2 (which is either one or minus one, depending on your conventions and on whether or not rho=0) into the trace,
with rho not equal to mu or nu, and then move one of the gamma^rho's around by commutation.
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...

Similar threads

Back
Top