Gauss' Law: Enclosed Cylinder in a Hollow Shell

snakeums
Messages
2
Reaction score
0
A long non-conducting cylinder has a charge density p = a*r, where a = 4.73 C/m^4 and r is in meters, and a radius of 0.0437m . Concentric around it is a hollow metallic cylindrical shell with an inner radius of 0.119m and an outer radius of 0.158m.

1) What is the electric field at 0.172m from the central axis? Answer in units of N/C.
2) What is the surface charge density inside the hollow cylinder? Answer in units of C/m2.

For part 1 I've already solved a few equations for charges at various radiuses along the inside of the cylinder, between the cylinder and the shell, etc, and I have the equation of (a*r^3)/(3*R*ε0), but I know this won't work because the radius is now outside the shell. I know the shell has no net charge, conceptually, so the charge outside is negative... but I'm still not sure what my R is for this equation.

For the second part I'm almost totally lost. The E = (/sigma)/ε0) doesn't make sense to me unless I'm supposed to get E for the radius JUST inside of the shell and use that.
 
Last edited:
Physics news on Phys.org
I'm thinking you're right about the second part, so all you technically need is the electric field. To make things simpler, you could convert the volume charge density to a linear charge density. The metallic shell doesn't devote to the electric field outside of it, so you could rely on the derived equation for outside the shell and near the inner surface of the shell.
 
Well I tried the second part by using (a*r^3)/(3*R*ε0), where r = 0.0437 and R = 0.119 to get E. Then I multiplied by ε0 again to get the (surface charge density) but I got 0.011056 which was wrong. So I guess I'm more lost than I thought.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top