MHB Gcd of polynomials is 1. There is an nxn matrix with determinant....

caffeinemachine
Gold Member
MHB
Messages
799
Reaction score
15
Let $F$ be any field. Let $p_1,\ldots, p_n\in F[x]$. Assume that $\gcd(p_1,\ldots,p_n)=1$. Show that there is an $n\times n$ matrix over $F[x]$ of determinant $1$ whose first row is $p_1,\ldots,p_n$.

When $n=2$ this is easy since then there exist $a_1,a_2\in F[x]$ such that $p_1a_1+p_2a_2=1$. So the required matrix has first row $p_1,p_2$ and the second row $-a_2,a_1$.

I am stuck when $n>2$.
 
Physics news on Phys.org
Re: gcd of polynomials is 1. there is an nxn matrix with determinant...

caffeinemachine said:
Let $F$ be any field. Let $p_1,\ldots, p_n\in F[x]$. Assume that $\gcd(p_1,\ldots,p_n)=1$. Show that there is an $n\times n$ matrix over $F[x]$ of determinant $1$ whose first row is $p_1,\ldots,p_n$.

When $n=2$ this is easy since then there exist $a_1,a_2\in F[x]$ such that $p_1a_1+p_2a_2=1$. So the required matrix has first row $p_1,p_2$ and the second row $-a_2,a_1$.

I am stuck when $n>2$.

For $n=3$ there exist $a_1,a_2,a_3\in F[x]$ such that $p_1a_1+p_2a_2+p_3a_3=1$.
So a matrix that has a matching determinant will do the trick.

For instance:
$$\begin{bmatrix}p_1 & p_2 & p_3 \\ 1 & -a_1/a_2 & 0 \\ 0 & a_3 & -a_2 \end{bmatrix}$$
Next step is to try and construct such a matrix for any n.
Put for instance 1 below $p_1$ and zeroes below that.
Then complete the proof with full induction.
 
Re: gcd of polynomials is 1. there is an nxn matrix with determinant...

I like Serena said:
For $n=3$ there exist $a_1,a_2,a_3\in F[x]$ such that $p_1a_1+p_2a_2+p_3a_3=1$.
So a matrix that has a matching determinant will do the trick.

For instance:
$$\begin{bmatrix}p_1 & p_2 & p_3 \\ 1 & -a_1/a_2 & 0 \\ 0 & a_3 & -a_2 \end{bmatrix}$$
Next step is to try and construct such a matrix for any n.
Put for instance 1 below $p_1$ and zeroes below that.
Then complete the proof with full induction.

This looks promising but there seems to be a small problem with this construction that $a_1/a_2$ might not necessarily lie in $F[x]$. Can we somehow still make it work?
 
Re: gcd of polynomials is 1. there is an nxn matrix with determinant...

caffeinemachine said:
This looks promising but there seems to be a small problem with this construction that $a_1/a_2$ might not necessarily lie in $F[x]$. Can we somehow still make it work?

Good point. :o

You already know that $\begin{bmatrix}p_2 & p_3 \\ -a_3' & a_2' \end{bmatrix}$ is a solution for n=2.

So we're looking for a solution of the following form for n=3:
$$\begin{bmatrix}p_1 & p_2 & p_3 \\ 1 & x & y \\ 0 & a_3 & -a_2 \end{bmatrix}$$
In other words:
$$p_1(-a_2 x - a_3 y) = p_1a_1$$
$$a_2 x + a_3 y = -a_1$$
This works if $\gcd(a_2, a_3)$ divides $a_1$.
Not yet sure how and if we can proof that though...
 
caffeinemachine said:
Let $F$ be any field. Let $p_1,\ldots, p_n\in F[x]$. Assume that $\gcd(p_1,\ldots,p_n)=1$. Show that there is an $n\times n$ matrix over $F[x]$ of determinant $1$ whose first row is $p_1,\ldots,p_n$.

When $n=2$ this is easy since then there exist $a_1,a_2\in F[x]$ such that $p_1a_1+p_2a_2=1$. So the required matrix has first row $p_1,p_2$ and the second row $-a_2,a_1$.

I am stuck when $n>2$.
For $n=3$ there exist $a_1,a_2,a_3\in F[x]$ such that $p_1a_1+p_2a_2+p_3a_3=1$. Let $d = \text{gcd}(a_2,a_3)$ and let $a_2 = db_2$ and $a_3 = db_3$, where $\text{gcd}(b_2,b_3) = 1.$ Then there exist $c_2$ and $c_3$ such that $a_1 = c_2b_2+c_3b_3.$ Consequently $$\begin{vmatrix}p_1&p_2&p_3 \\ 0&b_3&-b_2 \\ -d&c_2&c_3 \end{vmatrix} = p_1(b_3c_3+b_2c_2) -p_2(-b_2d) + p_3(b_3d) = p_1a_1 + p_2a_2+p_3a_3=1.$$

Where do we go from there? I don't have time at present to think about how to deal with $n>3$, but here are a couple of comments. First, this problem does not really appear to be about $F[x]$, it looks as though the result should apply to elements of any euclidean domain. Second, the upper right corner $\begin{array}{cc}p_2&p_3 \\b_3&-b_2 \end{array}$ of the above determinant has the same general appearance as the determinant that solves the $n=2$ case. That might perhaps mean that there is scope for some sort of inductive procedure here.
 
Opalg said:
For $n=3$ there exist $a_1,a_2,a_3\in F[x]$ such that $p_1a_1+p_2a_2+p_3a_3=1$. Let $d = \text{gcd}(a_2,a_3)$ and let $a_2 = db_2$ and $a_3 = db_3$, where $\text{gcd}(b_2,b_3) = 1.$ Then there exist $c_2$ and $c_3$ such that $a_1 = c_2b_2+c_3b_3.$ Consequently $$\begin{vmatrix}p_1&p_2&p_3 \\ 0&b_3&-b_2 \\ -d&c_2&c_3 \end{vmatrix} = p_1(b_3c_3+b_2c_2) -p_2(-b_2d) + p_3(b_3d) = p_1a_1 + p_2a_2+p_3a_3=1.$$

Where do we go from there? I don't have time at present to think about how to deal with $n>3$, but here are a couple of comments. First, this problem does not really appear to be about $F[x]$, it looks as though the result should apply to elements of any euclidean domain. Second, the upper right corner $\begin{array}{cc}p_2&p_3 \\b_3&-b_2 \end{array}$ of the above determinant has the same general appearance as the determinant that solves the $n=2$ case. That might perhaps mean that there is scope for some sort of inductive procedure here.
Thanks a ton!
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
Replies
4
Views
3K
Replies
15
Views
5K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K