Gcd of polynomials is 1. There is an nxn matrix with determinant....

Click For Summary

Discussion Overview

The discussion revolves around the construction of an \( n \times n \) matrix with determinant 1, where the first row consists of polynomials \( p_1, \ldots, p_n \) from a field \( F[x] \), given that their greatest common divisor (gcd) is 1. Participants explore this problem for various values of \( n \), particularly focusing on the cases when \( n = 2 \) and \( n = 3 \), and consider extending the approach to larger \( n \).

Discussion Character

  • Exploratory
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Some participants note that for \( n=2 \), it is straightforward to find coefficients \( a_1, a_2 \) such that \( p_1 a_1 + p_2 a_2 = 1 \), leading to a matrix with the desired properties.
  • For \( n=3 \), participants discuss the existence of coefficients \( a_1, a_2, a_3 \) such that \( p_1 a_1 + p_2 a_2 + p_3 a_3 = 1 \) and propose a specific matrix structure to achieve the determinant condition.
  • Concerns are raised about the validity of certain constructions, particularly regarding whether terms like \( a_1/a_2 \) lie within \( F[x] \).
  • Some participants suggest that the problem may extend beyond \( F[x] \) to elements of any Euclidean domain, hinting at a potential inductive approach based on patterns observed in smaller cases.
  • There is a discussion about the implications of the gcd of coefficients and how it relates to constructing the matrix for larger \( n \). Participants express uncertainty about how to generalize the findings for \( n > 3 \).

Areas of Agreement / Disagreement

Participants generally agree on the approach for \( n=2 \) and \( n=3 \), but there is no consensus on how to extend the argument to larger \( n \). Multiple competing views and uncertainties about the constructions and their validity remain present throughout the discussion.

Contextual Notes

Participants acknowledge limitations in their constructions, particularly regarding the assumptions about the coefficients and the need for further proof regarding the gcd conditions. The discussion reflects a dependency on the definitions and properties of polynomials in the context of fields and Euclidean domains.

caffeinemachine
Gold Member
MHB
Messages
799
Reaction score
15
Let $F$ be any field. Let $p_1,\ldots, p_n\in F[x]$. Assume that $\gcd(p_1,\ldots,p_n)=1$. Show that there is an $n\times n$ matrix over $F[x]$ of determinant $1$ whose first row is $p_1,\ldots,p_n$.

When $n=2$ this is easy since then there exist $a_1,a_2\in F[x]$ such that $p_1a_1+p_2a_2=1$. So the required matrix has first row $p_1,p_2$ and the second row $-a_2,a_1$.

I am stuck when $n>2$.
 
Physics news on Phys.org
Re: gcd of polynomials is 1. there is an nxn matrix with determinant...

caffeinemachine said:
Let $F$ be any field. Let $p_1,\ldots, p_n\in F[x]$. Assume that $\gcd(p_1,\ldots,p_n)=1$. Show that there is an $n\times n$ matrix over $F[x]$ of determinant $1$ whose first row is $p_1,\ldots,p_n$.

When $n=2$ this is easy since then there exist $a_1,a_2\in F[x]$ such that $p_1a_1+p_2a_2=1$. So the required matrix has first row $p_1,p_2$ and the second row $-a_2,a_1$.

I am stuck when $n>2$.

For $n=3$ there exist $a_1,a_2,a_3\in F[x]$ such that $p_1a_1+p_2a_2+p_3a_3=1$.
So a matrix that has a matching determinant will do the trick.

For instance:
$$\begin{bmatrix}p_1 & p_2 & p_3 \\ 1 & -a_1/a_2 & 0 \\ 0 & a_3 & -a_2 \end{bmatrix}$$
Next step is to try and construct such a matrix for any n.
Put for instance 1 below $p_1$ and zeroes below that.
Then complete the proof with full induction.
 
Re: gcd of polynomials is 1. there is an nxn matrix with determinant...

I like Serena said:
For $n=3$ there exist $a_1,a_2,a_3\in F[x]$ such that $p_1a_1+p_2a_2+p_3a_3=1$.
So a matrix that has a matching determinant will do the trick.

For instance:
$$\begin{bmatrix}p_1 & p_2 & p_3 \\ 1 & -a_1/a_2 & 0 \\ 0 & a_3 & -a_2 \end{bmatrix}$$
Next step is to try and construct such a matrix for any n.
Put for instance 1 below $p_1$ and zeroes below that.
Then complete the proof with full induction.

This looks promising but there seems to be a small problem with this construction that $a_1/a_2$ might not necessarily lie in $F[x]$. Can we somehow still make it work?
 
Re: gcd of polynomials is 1. there is an nxn matrix with determinant...

caffeinemachine said:
This looks promising but there seems to be a small problem with this construction that $a_1/a_2$ might not necessarily lie in $F[x]$. Can we somehow still make it work?

Good point. :o

You already know that $\begin{bmatrix}p_2 & p_3 \\ -a_3' & a_2' \end{bmatrix}$ is a solution for n=2.

So we're looking for a solution of the following form for n=3:
$$\begin{bmatrix}p_1 & p_2 & p_3 \\ 1 & x & y \\ 0 & a_3 & -a_2 \end{bmatrix}$$
In other words:
$$p_1(-a_2 x - a_3 y) = p_1a_1$$
$$a_2 x + a_3 y = -a_1$$
This works if $\gcd(a_2, a_3)$ divides $a_1$.
Not yet sure how and if we can proof that though...
 
caffeinemachine said:
Let $F$ be any field. Let $p_1,\ldots, p_n\in F[x]$. Assume that $\gcd(p_1,\ldots,p_n)=1$. Show that there is an $n\times n$ matrix over $F[x]$ of determinant $1$ whose first row is $p_1,\ldots,p_n$.

When $n=2$ this is easy since then there exist $a_1,a_2\in F[x]$ such that $p_1a_1+p_2a_2=1$. So the required matrix has first row $p_1,p_2$ and the second row $-a_2,a_1$.

I am stuck when $n>2$.
For $n=3$ there exist $a_1,a_2,a_3\in F[x]$ such that $p_1a_1+p_2a_2+p_3a_3=1$. Let $d = \text{gcd}(a_2,a_3)$ and let $a_2 = db_2$ and $a_3 = db_3$, where $\text{gcd}(b_2,b_3) = 1.$ Then there exist $c_2$ and $c_3$ such that $a_1 = c_2b_2+c_3b_3.$ Consequently $$\begin{vmatrix}p_1&p_2&p_3 \\ 0&b_3&-b_2 \\ -d&c_2&c_3 \end{vmatrix} = p_1(b_3c_3+b_2c_2) -p_2(-b_2d) + p_3(b_3d) = p_1a_1 + p_2a_2+p_3a_3=1.$$

Where do we go from there? I don't have time at present to think about how to deal with $n>3$, but here are a couple of comments. First, this problem does not really appear to be about $F[x]$, it looks as though the result should apply to elements of any euclidean domain. Second, the upper right corner $\begin{array}{cc}p_2&p_3 \\b_3&-b_2 \end{array}$ of the above determinant has the same general appearance as the determinant that solves the $n=2$ case. That might perhaps mean that there is scope for some sort of inductive procedure here.
 
Opalg said:
For $n=3$ there exist $a_1,a_2,a_3\in F[x]$ such that $p_1a_1+p_2a_2+p_3a_3=1$. Let $d = \text{gcd}(a_2,a_3)$ and let $a_2 = db_2$ and $a_3 = db_3$, where $\text{gcd}(b_2,b_3) = 1.$ Then there exist $c_2$ and $c_3$ such that $a_1 = c_2b_2+c_3b_3.$ Consequently $$\begin{vmatrix}p_1&p_2&p_3 \\ 0&b_3&-b_2 \\ -d&c_2&c_3 \end{vmatrix} = p_1(b_3c_3+b_2c_2) -p_2(-b_2d) + p_3(b_3d) = p_1a_1 + p_2a_2+p_3a_3=1.$$

Where do we go from there? I don't have time at present to think about how to deal with $n>3$, but here are a couple of comments. First, this problem does not really appear to be about $F[x]$, it looks as though the result should apply to elements of any euclidean domain. Second, the upper right corner $\begin{array}{cc}p_2&p_3 \\b_3&-b_2 \end{array}$ of the above determinant has the same general appearance as the determinant that solves the $n=2$ case. That might perhaps mean that there is scope for some sort of inductive procedure here.
Thanks a ton!
 

Similar threads

  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 15 ·
Replies
15
Views
5K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 25 ·
Replies
25
Views
4K