General feature of Newton Integral

dapet
Messages
9
Reaction score
0
Hi,

I need a help with responding one question from my calculus classes...

Lef f: [0, + infin.) ---> R be a continuous function and let exist the finite Newton integral of f(x) dx from 0 to +infinity. It´s neccesary that f is bounded?

Thanks for any help. :wink:
 
Physics news on Phys.org
I'm not sure what you mean by "the finite Newton integral". Do you mean to assert that the Riemann integral is finite?
 
By Newton Integral I mean the integral of f(x) dx from a to b defined as follows, let F be a primtive function to f then the discussed integral is equal to F(b) - F(a) or [lim (x --> b-) F(x) - lim (x --> a+) F(x)] and the Riemanns definition of integral is based on the areas in the graph. So the task demands to proof it only from the Newton's definition.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top