General Form of Canonical Transformations

kolawoletech
Messages
4
Reaction score
0

Homework Statement


How do I go about finding the most general form of the canonical transformation of the form
Q = f(q) + g(p)
P = c[f(q) + h(p)]
where f,g and h are differential functions and c is a constant not equal to zero. Where (Q,P) and (q,p) represent the generalised cordinates and conjugate momentum in the new and old system

Homework Equations


{Q,Q}={P,P}=0 {Q,P}=1

The Attempt at a Solution


I arrived at a function

c.f'(q)[h'(p)-g'(p)]=1

I don't know how to get further to prove canonicity
 
Physics news on Phys.org
kolawoletech said:
c.f'(q)[h'(p)-g'(p)]=1
There are two independent variables in this equation: p and q, and we require it to hold for all values of p and q. That should enable us to radically narrow down the possibilities for functions f, g and h.

Try partial differentiating both sides of the equation with respect to q to get one equation and then wrt p to get another.
What do those two equations tell you about the functions f and (h-g)?
 
I did that and got to "see the attachment"
But I am not so sure if I did it right
The rest of the question see solve the inverse of the canonical transformation: express q, p in terms of Q and P. The actual question is attached see attachment(it is the second question)
 

Attachments

  • IMG-20160412-WA0001.jpg
    IMG-20160412-WA0001.jpg
    24.1 KB · Views: 548
  • HjIkBnu9.jpg
    HjIkBnu9.jpg
    25.9 KB · Views: 474
I'm sorry but that photo is way too hard to read. Try typing it in using latex. This post is a primer to get you started. If you're studying physics then any time spent learning latex is a very good investment.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top