Asphyxiated
- 263
- 0
Homework Statement
My book states that "The only way that we can show that the function f(x) = \sqrt {1 + x^{4}} has an anti-derivative is to take a definite integral,
\int^{x}_{0} \sqrt {1 + t^{4}} dt
This is a new function that cannot be expressed in terms of algebraic, trigonometric or exponential functions without calculus."
What are they really saying here? I don't understand the point. Why is the anti-derivative of
f(x) = \sqrt {1 + x^{4}} an integral? And why do we switch the variables from x to t with respect to t?
Second Part Of My Question
From my book:
"The Fundamental Theorem can also be used to find the derivative of a function which is defined as a definite integral with a variable limit of integration. This can be done without actually evaluating the integral."
Examples:
Let
y = \int^{2}_{x} \sqrt{1+t^{2}} dt
then
y = - \int^{x}_{2} \sqrt{1+t^{2}} dt
and
dy = -d( \int^{x}_{2} \sqrt{1+t^{2}}dt) = -\sqrt{1+x^{2}} dx
My question here arises from the same thing, why do they take a negative integral before taking a derivative and why does the derivative switch from t dt to x dx? The only reason I can see from the example is that x is the upper limit of the integral.. is that why?
A second example given:
Let
y = \int^{x^{2}+x}_{3} \frac {1} {t^{3}+1} dt
Let
u = x^{2}+x
Then
\frac {du}{dx} = (2x+1) ... y = \int^{u}_{3} \frac {1}{t^{3}+1} dt
\frac {dy}{du} = \frac {1}{u^{3}+1}
then by the chain rule
\frac {dy}{dx} = \frac{dy}{du}\frac{du}{dx} = \frac{1}{u^{3}+1} (2x+1) = \frac {2x +1} {(x^{2}+x)^{3} +1}
I have basically the same questions as before here, so any advice would be great.
The only thing that is after this in my book is questions for the chapter so I am kind of at a loss right now.
Thanks!