kntsy
- 80
- 0
I find this statement confusing from Wikipedia:
sin(y)=x\Leftrightarrow y=arcsin(x)+2k\pi\ \forall\ k\in\mathbb Z
Is this statement false? "arcsin(x)" gives the principal value:[\frac{-\pi}{2},\frac{\pi}{2}]. Therefore,specifically, "arcsin(x)" gives \frac{\pi}{3}\text{ but not}\frac{2\pi}{3}.
My textbook:
sin(y)=x\Leftrightarrow y=(-1)^{k}arcsin(x)+k\pi\ \forall\ k\in\mathbb Z
I think my textbook's statement is more "complete".Or are the 2 statements both true?
sin(y)=x\Leftrightarrow y=arcsin(x)+2k\pi\ \forall\ k\in\mathbb Z
Is this statement false? "arcsin(x)" gives the principal value:[\frac{-\pi}{2},\frac{\pi}{2}]. Therefore,specifically, "arcsin(x)" gives \frac{\pi}{3}\text{ but not}\frac{2\pi}{3}.
My textbook:
sin(y)=x\Leftrightarrow y=(-1)^{k}arcsin(x)+k\pi\ \forall\ k\in\mathbb Z
I think my textbook's statement is more "complete".Or are the 2 statements both true?