I was OK with your post up until this point. It would be OK to say that the rocket cannot extend to x = 0, but it is not OK to say that "clocks at that level are not ticking at all and nothing can fall past them". The reason is simple: if you drop something out the window, it *does* fall past "a point c^2/g below", and its clock continues to tick. However, even this way of stating it is, in my opinion, misleading, which is why I put the phrase "a point c^2/g below" in quotes.
Here's what I think is a better way to describe what's going on: consider a light beam emitted from the event x = 0, t = 0 in the global inertial frame (what I think we were calling the "lab frame" above, as opposed to the "rocket frame"). No observer on the rocket, on any of its floors, will ever see this light beam; it will never catch up to any portion of the rocket (assuming that the rocket, with all its floors, maintains its acceleration forever). This fact is what justifies us referring to the light beam's worldline--the line x = t--as a "horizon" with respect to the rocket. However, a free-falling observer who is dropped off any floor of the rocket *will* see this light beam, after a finite amount of proper time by the free-falling observer's clock. From the rocket's point of view, the free-falling observer's clock will *appear* to move slower and slower as the observer approaches the horizon, but no rocket observer will ever see the free-falling observer cross the horizon (because light rays from events on the horizon will never catch up to the rocket, as above).
(Edit: I should clarify the statement "the free-falling observer's clock will appear to move slower and slower". What I really should have said was that, if we imagine the free-falling observer emitting light beams at values of his proper time closer and closer to the proper time when he crosses the horizon, those light beams will reach the rocket at times, according to the rocket's clock, that increase without bound.)
This way of putting things also puts the "gravity approaches infinity as the horizon approached" statement into proper perspective. The horizon itself is a null surface--only light rays can move "on" the horizon, so there's no such thing as an observer that stays "at" the horizon, not even one with infinite acceleration (or infinite "gravity"). The best you can do is to say that, for hyperbolas x^2 - t^2 = x_0^2, as x_0 gets closer and closer to zero, the acceleration felt by observers moving along the hyperbola gets larger and larger, without bound. (Also, of course, since there's no observer that stays at the horizon, there's no clock that "is not ticking" there.)