General solution of second order ODE

smart_worker
Messages
131
Reaction score
1

Homework Statement



Find the general solution.

Homework Equations



y"+y=x2sin2x

The Attempt at a Solution



Characteristic equation would be:
m2 + 1 = 0

So,m2 = -1

Therefore, m = i or m = -i.

Complementary function would be : Asinx+Bcosx where,A and B are constants respectively.

If I write the particular integral as (Cx2+Dx+E)sin2x + (Px2+Qx+R)cos2x
Then,it would be very tedious to solve.

Is there any alternative way like writing sin2x as Imaginary part of ei2x and then solving the particular integral?
 
Physics news on Phys.org
smart_worker said:

Homework Statement



Find the general solution.

Homework Equations



y"+y=x2sin2x

The Attempt at a Solution



Characteristic equation would be:
m2 + 1 = 0

So,m2 = -1

Therefore, m = i or m = -i.

Complementary function would be : Asinx+Bcosx where,A and B are constants respectively.

If I write the particular integral as (Cx2+Dx+E)sin2x + (Px2+Qx+R)cos2x
Then,it would be very tedious to solve.
But not that tedious. All you have to do is take the first and second derivatives, and substitute them into your DE to determine the six constants. It might be there is another way, but this is how I would do the problem.
smart_worker said:
Is there any alternative way like writing sin2x as Imaginary part of ei2x and then solving the particular integral?
 
Another approach is Laplace transform:

For the right-hand term,
if f(x) ↔ F(s), then
x2f(x) ↔ F''(s)
and f(x) = sin(2x) and F(s) = L{sin(2x)}.

You can incorporate the two initial conditions on y also in the usual manner if they're not identically zero.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top