Generalization of the bohr rule for harmonic oscillators

uppiemurphy
Messages
5
Reaction score
0

Homework Statement



The generalization of the bohr rule to periodic motion more general than circular orbit states that:
p.dr = nh = 2∏nh(bar).

the integral is a closed line integral and the bolded letters represent vectors.

Using the generalized, show that the spectrum for the one-dimensional harmonic oscillator, for which E = p2/2m + mw2x2/2 is E = nh(bar)w.

Homework Equations



2∏x = nλ, px = nh(bar)

The Attempt at a Solution



Basically I know how to get E = nh(bar)w for a harmonic oscillator without using integrals, but I'm confused as to how to express E as an integral which is what I assume they're asking for.

I know that the total energy of the system when the spring is fully stretched is Etot = mw2x2/2. Do I somehow have to write this in terms of momentum and then integrate? I'm probably missing something fairly obvious here, but how would I write that in terms of P?
 
Physics news on Phys.org
Hello, uppiemurphy.

It's not that you need to express E as an integral. Rather, you need to express the result of the integraton ∫pdx in terms of E. The quantization of E will then come from the condition ∫pdx = nh.

To perform the integration ∫pdx you'll need to express p as a function of x for a specific energy E. Note E = KE + PE. See if you can express KE in terms of p and PE in terms of x. [Edit: I see that the expression for E in terms of p and x is already given in the problem. Use it to get p as a function of x so you can do the integration.]
 
Last edited:
I'm just confused as to what to do with E mainly... when I isolate my expression for p I'm left with p = sqrt(2mE-m^2w^2x^2) how do I integrate this when I have E in my expression for p?
 
E is just a constant of the motion. So, you have ## p = \sqrt{a-bx^2}## where a and b are constants.
 
I don't see how that integral would yield the correct answer at all though... You end up with a pretty complicated expression that is difficult to simplify
 
nevermind I got it! thank you for your help!
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top