Generalizing entanglement: Aren't all quantum events superluminal?

DB Katzin
Messages
27
Reaction score
0
Generalizing entanglement: Aren't all quantum "events" superluminal?

If as it seems, the speed of the collapsing wave front of entangled particles occurs at a superluminal velocity, what is special about entangled particles? It follows that all quantum changes occur at superluminal rates, e.g. the orbital shifts of an electron that absorbs or emits a photon in the process. If this orbital shift is not fast with respect to the speed of light, the peppy little photon will be stretched out across space and would then itself have to snap into a coherent, respectable photon at superluminal speeds. Either way, something is happening at trans light speed. Similarly, regarding a photon that passes through a diffraction grating, it seems one explanation of the strange finding that even single photons create a diffraction pattern in the two slit diffraction experiment is that the un-collapsed photon is such a large wavicle--wave packet—that it interferes with itself. When this relatively large photonic probability waveform strikes the sensor at the back and causes an electronic discharge, doesn't the collapse of its wave function and the subsequent transfer of energy also have to occur at a rate which is “fast” relative to light speed or part of the photon will have had time to bounce off the sensor and would be racing back towards the grating once again stretching it out so that it must be “sucked in” at superluminal speeds or some part of it will never actually “get in?” Either way superluminal velocities are involved, implying this is the rule not the exception. My regrets to Professor Einstein.
 
Physics news on Phys.org


I think this is pretty much the case (as you describe). When a photon is detected "here", it no longer has the possiblity of being detected "there". So the collapse changes a probability amplitude everywhere the packet existed (i.e. to 1 or to 0).

But is it physical? And is it superluminal? There are interpretations in which a superluminal action is not required to explain the results.
 


DrChinese said:
I think this is pretty much the case (as you describe). When a photon is detected "here", it no longer has the possiblity of being detected "there". So the collapse changes a probability amplitude everywhere the packet existed (i.e. to 1 or to 0).

But is it physical? And is it superluminal? There are interpretations in which a superluminal action is not required to explain the results.

There is--actually was--a thread entitled something like "Feynman's double slit experiment" where passions ran so high the thread was locked down. At least one poster categorically denied that the statement "interference patterns continue to appear even when there is only one photon at a time going through the grating" or "disappear when path is determined" have any validity and produced a number of references to prove it. Furthermore, it seems like Dirac's statement that photons cannot interact with other photons was premature and inaccurate in everyone's judgment. Bell's inequality while possibly being demonstrable proves nothing of consequence and where quantum mechanical superluminal events might occur, if they do, no information is transferred so there is no worry about violating special relativity. Do you concur with these general statement which basically boil down to all the really cool stuff about quantum mechanics is either wishful thinking, sensationalism, mysticism or just sloppy experimental technique. I wonder.
 


DB Katzin said:
At least one poster categorically denied that the statement "interference patterns continue to appear even when there is only one photon at a time going through the grating" or "disappear when path is determined" have any validity and produced a number of references to prove it.

Sounds crank.

Furthermore, it seems like Dirac's statement that photons cannot interact with other photons was premature and inaccurate in everyone's judgment.

They can interact, but the interaction is quite weak.

Bell's inequality while possibly being demonstrable proves nothing of consequence and where quantum mechanical superluminal events might occur, if they do, no information is transferred so there is no worry about violating special relativity.

Depends on what you worry about. Observable effects will be Lorentz invariant. If you worry about what really happens, you need superluminal effects for explanation.
 


Ilja said:
Sounds crank.



They can interact, but the interaction is quite weak.



Depends on what you worry about. Observable effects will be Lorentz invariant. If you worry about what really happens, you need superluminal effects for explanation.

Much appreciated. Thanks.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
According to recent podcast between Jacob Barandes and Sean Carroll, Barandes claims that putting a sensitive qubit near one of the slits of a double slit interference experiment is sufficient to break the interference pattern. Here are his words from the official transcript: Is that true? Caveats I see: The qubit is a quantum object, so if the particle was in a superposition of up and down, the qubit can be in a superposition too. Measuring the qubit in an orthogonal direction might...
Back
Top