I Generators of Galois group of ## X^n - \theta ##

kmitza
Messages
17
Reaction score
4
TL;DR Summary
If we have a polynomial ##x^p - \theta## for some prime p. Then we can show that it's Galois group has order p(p-1) then I want to prove what the group looks like described by generators and relations between them
As the summary says we have ## f(x) = x^n - \theta \in \mathbb{Q}[x] ##. We will call the pth primitive root ## \omega ## and we denote ##[\mathbb{Q}(\omega) : \mathbb{Q}] = j##. We want to show that the Galois group is generated by ##\sigma, \tau## such that
$$ \sigma^j = \tau^p = 1, \sigma^k\tau = \tau\sigma$$.

I know that the splitting field of ## f ## is going to be ##Q(t,\omega)## and that the degree of this extension is going to be ##[Q(t,\omega): :Q(\omega)][Q(\omega : Q)] ## where ## t^p = \theta ##, further as minimal polynomial of ## \omega ## is going to be ## p^{th} ## cyclotomic I have the second multiple being (p-1) and I can prove that the whole extension will have degree p(p-1). Now my idea is to define the morphisms as:
$$\sigma(t) = t, \sigma(\omega) = \omega^2$$ and $$\tau(t) = t\omega, \tau(\omega) = \omega$$
I can show that order of these two groups are p-1 and p but I don't know how to show that they generate my group.
I suspect that I am meant to construct the group as a semidirect product of ##<\tau>## and ##<\omega>## but I can't figure it out completely.
 
Physics news on Phys.org
The order of the Galois group divides the degree of the extension, which you say you know is p(p-1). Do you know any numbers that must divide the order of the galois group?

Knowing the order of the Galois group helps a lot in figuring out what it is, because you can often rule out relationships existing between elements that you wouldn't have immediately guessed.
 
Last edited:
Office_Shredder said:
The order of the Galois group divides the degree of the extension, which you say you know is p(p-1). Do you know any numbers that must divide the order of the galois group?

Knowing the order of the Galois group helps a lot in figuring out what it is, because you can often rule out relationships existing between elements that you wouldn't have immediately guessed.
Maybe I am mistaken but if I know the degree of the extension and I know it is Galois, don't I know that group is going to be of the order exactly the same as the degree? So I know that the order of the whole Galois group is p(p-1)? Now I know that I have a subgroup of order p which is immediately cyclic and I have a subgroup of order p-1 generated by ## \sigma ## and as the two groups are of coprime order their intersection is the identity? Now from here I don't know what to do
 
You say the subgroup of order p-1 is generated by a single element ##\sigma##, so that it's also cyclic?
Edit: Because if you're correct, and both are cyclic, so is their direct product, and then you won't have the relations you described.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
Back
Top