Geodesic Equation from conservation of energy-momentum

PLuz
Messages
60
Reaction score
0
Hi everyone,

While reading http://relativity.livingreviews.org/Articles/lrr-2011-7/fulltext.html reference I bumped into a result. Can anyone get from Eq.19.1 to Eq.19.3?

I've also been struggling to get from that equation to the one before 19.4 (which isn't numbered)...anyone?

Thank you very much
 
Physics news on Phys.org
The stress-energy tensor is correctly defined as Tμν = 2 δL/δgμν. So as he says, "the particle’s energy-momentum tensor, obtained by functional differentiation of Sparticle with respect to gαβ(x)".

Well, calculus tells us for any A, δ√A = (1/2√A) δA, which explains the √ thing in the denominator. All that remains is to vary the argument, gμν(z)zμzν with respect to gαβ(x). (The z's are constant.)

He gives a hint: "the parallel propagators appear naturally by expressing gμν(z) as gαμ(z,x) gβν(z,x) gαβ(x)." When we vary this with respect to gαβ(x), all that happens is that the last factor drops out, and we are left with just the two parallel propagators in the numerator. (The z's are still there.)
 
Yes I agree with him and obviously with what you wrote. It's my mistake, I should have been more specific. What I don't understand is from where does de dirac delta appear? Because as you said from his definition of the action, differentiating we should only have the other terms, right?And the other equation?taking the the covariante derivative of Eq.19.3 should give us something like this:\nabla_{\beta}T^{\alpha \beta}=\int_{\gamma}\frac{1}{\sqrt(-g_{\mu \nu}\dot{z}^\mu \dot{z}^\nu)}g^{\alpha}_{\mu}g^{\beta}_{\nu}\nabla_{\beta}(\dot{z}^\mu \dot{z}^\nu)\delta_{4}(x,z) + g^{\alpha}_{\mu}g^{\beta}_{\nu}\nabla_{\beta}(\dot{z}^\mu \dot{z}^\nu) \nabla_{\beta}(\frac{1}{\sqrt(-g_{\mu \nu}\dot{z}^\mu \dot{z}^\nu)})\delta_{4}(x,z) d\lambda.

So the first term in the integral gives (ignoring the fraction) g^{\alpha}_{\mu}\dot{z}^\mu g^{\beta}_{\nu}\nabla_{\beta}(\dot{z}^\nu)+ g^{\alpha}_{\mu} g^{\beta}_{\nu}\dot{z}^\nu \nabla_{\beta}(\dot{z}^\mu)

I can argue that the tensor is symmetric in \alpha and \beta and in \mu and \nu (right?) and then I end up with
2\frac{D}{d \lambda}(g^{\alpha}_{\mu}\dot{z}^{\mu})

and there shouldn't be a 2 there...

Does anybody see my mistake?
 
Last edited:
Finnaly I found from where the dirac delta comes from. One has to write the action in terms of a Lagrangian density. But I still can't get the expression before Eq.19.4...

Actually I believe there might be some inconsistency in the calculation done by Poisson. The fact that in the end he ends up with the derivative along the curve means that has used at some point g^\beta_\nu \dot{z}^\nu= \dot{z}^\beta but that is only true if \dot{z}^\nu is parallel transported along de curve which is the goal of the proof...Anyone?
 
Last edited:
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Back
Top