Geodesic equation in new coordinates question

PsiPhi
Messages
19
Reaction score
0

Homework Statement


Suppose \bar{x}^{\mu} is another set of coordinates with connection components \bar{\Gamma}^{\mu}_{\alpha\beta}. Write down the geodesic equation in new coordinates.


Homework Equations


Using the geodesic equation: 0 = \frac{d^{2}x^{\mu}}{ds^{2}} + \Gamma^{\mu}_{\alpha\beta}\frac{dx^{\alpha}}{ds}\frac{dx^{\beta}}{ds}
where s represents the parameterised curve, i.e. x(s)

The Attempt at a Solution


Now the question asks to move to a new coordinate system (i.e. bar over the terms). So, I began by identifying which terms will be effected by the transformation. Namely, the tangent vectors will transform according to
\frac{dx^{\mu}}{ds} = v^{\mu} = \frac{\partial x^{\mu}}{\partial \bar{x}^{\nu}}\frac{d \bar{x}^{\nu}}{ds} ; \frac{dx^{\alpha}}{ds} = v^{\alpha} = \frac{\partial x^{\alpha}}{\partial \bar{x}^{\theta}}\frac{d \bar{x}^{\theta}}{ds} ; \frac{dx^{\beta}}{ds} = v^{\beta} = \frac{\partial x^{\beta}}{\partial \bar{x}^{\phi}}\frac{d \bar{x}^{\phi}}{ds}
The metric connection will transform as
\Gamma^{\mu}_{\alpha\beta} = \frac{\partial x^{\mu}}{\partial \bar{x}^{P}}\frac{\partial \bar{x}^{\theta}}{\partial x^{\alpha}}\frac{\partial \bar{x}^\phi}{\partial x^{\beta}} \bar{\Gamma}^{P}_{\theta\phi} - \frac{\partial ^{2}x^{\mu}}{\partial \bar{x}^{\theta} \partial \bar{x}^{\phi}} \frac{\partial \bar{x}^{\theta}}{\partial x^{\alpha}} \frac{\partial \bar{x}^{\phi}}{\partial x^{\beta}}
I substituted these terms into the geodesic equation above, canceled out partial derivatives on numerators and denominators to obtain:
0 = \frac{d}{ds}\left(\frac{\partial x^{\mu}}{\partial \bar{x}^{\nu}} \frac{d \bar{x}^{\nu}}{ds}\right) + \frac{\partial x^{\mu}}{\partial \bar{x}^{P}}\frac{d \bar{x}^{\theta}}{ds}\frac{d \bar{x}^{\phi}}{ds} \bar{\Gamma}^{P}_{\theta\phi} - \frac{\partial ^{2}x^{\mu}}{\partial \bar{x}^{\theta} \partial \bar{x}^{\phi}} \frac{d \bar{x}^{\theta}}{ds} \frac{d \bar{x}^{\phi}}{ds}

I was just wondering if my final equation for the geodesic equation in new coordinates \bar{x}^{\mu} was correct?

I suspect a flaw in the mathematical logic when I cancel out the partial derivative in the numerators and denominators. Was this procedure allowed?
Also, I think there may be a problem with my indices with respect to Einstein summation convention.
Thoughts?
 
Physics news on Phys.org
PsiPhi said:

Homework Statement


Suppose \bar{x}^{\mu} is another set of coordinates with connection components \bar{\Gamma}^{\mu}_{\alpha\beta}. Write down the geodesic equation in new coordinates.


Homework Equations


Using the geodesic equation: 0 = \frac{d^{2}x^{\mu}}{ds^{2}} + \Gamma^{\mu}_{\alpha\beta}\frac{dx^{\alpha}}{ds}\frac{dx^{\beta}}{ds}
where s represents the parameterised curve, i.e. x(s)

The Attempt at a Solution


Now the question asks to move to a new coordinate system (i.e. bar over the terms). So, I began by identifying which terms will be effected by the transformation. Namely, the tangent vectors will transform according to
\frac{dx^{\mu}}{ds} = v^{\mu} = \frac{\partial x^{\mu}}{\partial \bar{x}^{\nu}}\frac{d \bar{x}^{\nu}}{ds} ; \frac{dx^{\alpha}}{ds} = v^{\alpha} = \frac{\partial x^{\alpha}}{\partial \bar{x}^{\theta}}\frac{d \bar{x}^{\theta}}{ds} ; \frac{dx^{\beta}}{ds} = v^{\beta} = \frac{\partial x^{\beta}}{\partial \bar{x}^{\phi}}\frac{d \bar{x}^{\phi}}{ds}
The metric connection will transform as
\Gamma^{\mu}_{\alpha\beta} = \frac{\partial x^{\mu}}{\partial \bar{x}^{P}}\frac{\partial \bar{x}^{\theta}}{\partial x^{\alpha}}\frac{\partial \bar{x}^\phi}{\partial x^{\beta}} \bar{\Gamma}^{P}_{\theta\phi} - \frac{\partial ^{2}x^{\mu}}{\partial \bar{x}^{\theta} \partial \bar{x}^{\phi}} \frac{\partial \bar{x}^{\theta}}{\partial x^{\alpha}} \frac{\partial \bar{x}^{\phi}}{\partial x^{\beta}}
I substituted these terms into the geodesic equation above, canceled out partial derivatives on numerators and denominators to obtain:
0 = \frac{d}{ds}\left(\frac{\partial x^{\mu}}{\partial \bar{x}^{\nu}} \frac{d \bar{x}^{\nu}}{ds}\right) + \frac{\partial x^{\mu}}{\partial \bar{x}^{P}}\frac{d \bar{x}^{\theta}}{ds}\frac{d \bar{x}^{\phi}}{ds} \bar{\Gamma}^{P}_{\theta\phi} - \frac{\partial ^{2}x^{\mu}}{\partial \bar{x}^{\theta} \partial \bar{x}^{\phi}} \frac{d \bar{x}^{\theta}}{ds} \frac{d \bar{x}^{\phi}}{ds}

I was just wondering if my final equation for the geodesic equation in new coordinates \bar{x}^{\mu} was correct?

I suspect a flaw in the mathematical logic when I cancel out the partial derivative in the numerators and denominators. Was this procedure allowed?
Also, I think there may be a problem with my indices with respect to Einstein summation convention.
Thoughts?

Sorry it took a while to get back to you. If you have it available, look at page 102 of Weinberg's "Gravitation and Cosmology. There he shows that the geodesic equation transforms like a vector.
 
Cheers, AEM.

I do have Weinberg's text, I will have a look.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top