Geodesic in 2D Space: Understanding the Statement

vidi
Messages
6
Reaction score
0

Homework Statement


I am having trouble understanding how the following statement (taken from some old notes) is true:

>For a 2 dimensional space such that ds^2=\frac{1}{u^2}(-du^2+dv^2)
the timelike geodesics are given by u^2=v^2+av+b where a,b are constants.




Homework Equations


Euler-Lagrange, Normalisation condition


The Attempt at a Solution



When I see "geodesics" I jump to the Euler-Lagrange equations. They give me
\frac{d}{d\lambda}(-2\frac{\dot u}{u^2})=(-\dot u^2+\dot v^2)(-\frac{2}{u^3})\\<br /> \implies \frac{\ddot u}{u^2}-2\frac{\dot u^2}{u^3}=\frac{1}{u^3}(-\dot u^2+\dot v^2)\\<br /> \implies u\ddot u-\dot u^2-\dot v^2=0
and
\frac{d}{d\lambda}(2\frac{\dot v}{u^2})=0\\<br /> \implies \dot v=cu^2
where c is some constant.

Timelike implies \dot x^a\dot x_a=-1 where I have adopted the (-+++) signature.

I can't for the life of me see how the statement results from these. Would someone mind explaining? Thanks.
 
Physics news on Phys.org
Do not expand the Euler-Lagrange equations. But do a trick like this:

The Lagrangian is:

L = \frac{1}{u}\sqrt{\left(\frac{dv}{du}\right)^2-1}= \frac{1}{u}\sqrt{v&#039;^2-1}

Now you see this doesn't depend on $v$. The Euler Lagrange equations then give:

0=\frac{\partial L}{\partial v}=\frac{d}{du}\frac{\partial L}{\partial v&#039;} \Longrightarrow \frac{\partial L}{\partial v&#039;}=C

Now calculate \frac{\partial L}{\partial v&#039;} from the Lagrangian and put it equal to the constant C. This will lead to a differential equation which gives the solution you were looking for.
 
Last edited:
Thanks, Thaakisfox, I've got it now!
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top