The vector space of 4 x 4 matrices is 16 dimensional, so it's not possible in the usual sense.
Also, the specific nature of the elements of the vector space is not relevant. For example, you can visualize the vector space of polynomials with real coefficients up to the second degree in the same you you visualize R3, because the two spaces have the same dimension. You can choose the basis vectors for the former as 1, x and x2, and treat them visually the same way you treat (1, 0, 0), (0, 1, 0) and (0, 0, 1).