Gram-Schmidt Process: Solve for V & x

  • Thread starter Thread starter Tonyt88
  • Start date Start date
  • Tags Tags
    Process
Tonyt88
Messages
62
Reaction score
0

Homework Statement



V = span(S) where S = {(1, i, 0), ((1-i), 2, 4i)}, and x = ((3+i), 4i, -4)

Obtain the orthogonal basis, then normalize for the orthonormal basis, and then compute the Fourier coefficients.

Homework Equations



v2 = w2 - (<w2,v1>)(v1)/(||v1||²)

The Attempt at a Solution



So using this above equation, I get ||v1||² to equal zero because 1 + i² = 1 - 1 = 0, thus I'm dividing by zero, so where do I go from here, or am I miscalculating somewhere?
 
Physics news on Phys.org
How do you compute the square-norm of a complex number?
 
Ok this is what you did wrong:

||v1||² = v1* . v1 = (1, i, 0)*. (1, i, 0) = 1+(-i)(i)=1+1=2
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top