geoduck
- 257
- 2
Quick question about Grassman numbers and change of variables.
Suppose you have the function:
f=\frac{c\epsilon_{ij} }{2!} \psi_i \psi_j
and integrate it:
\int d\psi_2 d\psi_1 \frac{c\epsilon_{ij} }{2!} \psi_i \psi_j =c
Now change variables: \psi_i=J_{ik}\psi'_k to get:
\int d\psi_2 d\psi_1 \frac{c\epsilon_{ij} }{2!} \psi_i \psi_j=<br /> \int J_{2r} J_{1s}d\psi'_r d\psi'_s \frac{c\epsilon_{ij} }{2!} J_{im}\psi'_m J_{jn} \psi'_n <br /> =<br /> \int det[J]d\psi'_2 d\psi'_1 \frac{c\epsilon_{mn} }{2!} det[J] \psi'_m \psi'_n <br /> =c
Doesn't this imply that det[J]2 has to equal one though? That can't be right.
Suppose you have the function:
f=\frac{c\epsilon_{ij} }{2!} \psi_i \psi_j
and integrate it:
\int d\psi_2 d\psi_1 \frac{c\epsilon_{ij} }{2!} \psi_i \psi_j =c
Now change variables: \psi_i=J_{ik}\psi'_k to get:
\int d\psi_2 d\psi_1 \frac{c\epsilon_{ij} }{2!} \psi_i \psi_j=<br /> \int J_{2r} J_{1s}d\psi'_r d\psi'_s \frac{c\epsilon_{ij} }{2!} J_{im}\psi'_m J_{jn} \psi'_n <br /> =<br /> \int det[J]d\psi'_2 d\psi'_1 \frac{c\epsilon_{mn} }{2!} det[J] \psi'_m \psi'_n <br /> =c
Doesn't this imply that det[J]2 has to equal one though? That can't be right.