I Gravitational DE(?) from Schwartzschild spacetime

cozycoz
Messages
13
Reaction score
1
Imagining that an object spining around a spherical mass M has angular momentum that has z-component(θ=0) only, then

$$g_{μν}\frac{dx^μ}{dτ}\frac{dx^ν}{dτ}=(1-\frac{r_s}{r})c^2(\frac{dt}{dτ})^2-\frac{1}{1-\frac{r_s}{r}}(\frac{dr}{dτ})^2-r^2(\frac{dθ}{dτ})^2-r^2\sin^2θ(\frac{dφ}{dτ})^2=c^2$$

becomes

$$(1-\frac{r_s}{r})c^2(\frac{dt}{dτ})^2-\frac{1}{1-\frac{r_s}{r}}(\frac{dr}{dτ})^2-r^2(\frac{dφ}{dτ})^2=c^2.$$
(because the object's path follows ##θ=\frac{π}{2}## and ##\frac{dθ}{dτ}=0##.)According to my professor, by calculus of variation,

$$δ\int ds=δ∫\sqrt{g_{μν}\frac{dx^μ}{dτ}\frac{dx^ν}{dτ}}=0.$$

and if we define ##g_{μν}\frac{dx^μ}{dτ}\frac{dx^ν}{dτ}=c^2≡2T##,

$$δs=δ\int{\sqrt{2T}dτ}=\int{\frac{δT}{\sqrt{2T}}dτ}=\frac{1}{c^2}\int{δT}dτ=0.$$

Therefore, by Euler-Lagrange Equation ##\frac{d}{dτ}(\frac{∂T}{∂\dot{x_μ}})-\frac{∂T}{∂x^μ}=0##, with ##μ=0## we get
$$(1-\frac{r_S}{r})\frac{dt}{dτ}=const.$$So, here goes my question finally.

By multiplying ##mc## to ##\frac{dt}{dτ}##,
$$mc\frac{dt}{dτ}=m\frac{d(ct)}{dτ}=m\frac{dx^0}{dτ}=mU^0=P^0=\frac{E}{c}$$(##U^0## represents four-velocity and ##P^0## four-momentum)

so if we compare the first and the last term, ##\frac{dt}{dτ}=\frac{E}{mc^2}## is the result that I think is correct. But my textbook tells ##(1-\frac{r_S}{r})\frac{dt}{dτ}=\frac{E}{mc^2}##.

If I use ##\frac{dt}{dτ}=\frac{E}{mc^2}##, I get differential equation below:
$$(\frac{dr}{dτ})^2+\frac{J^2}{m^2r^2}(1-\frac{r_S}{r})-\frac{2GM}{r}=c^2[(1-\frac{r_S}{r})^2(\frac{E}{mc^2})^2-1],$$

but using ##(1-\frac{r_S}{r})\frac{dt}{dτ}=\frac{E}{mc^2}##, I get
$$(\frac{dr}{dτ})^2+\frac{J^2}{m^2r^2}(1-\frac{r_S}{r})-\frac{2GM}{r}=c^2[(\frac{E}{mc^2})^2-1].$$

Could you tell me why ##\frac{dt}{dτ}=\frac{E}{mc^2}## is not correct? Thanks!
 
Physics news on Phys.org
cozycoz said:
Therefore, by Euler-Lagrange Equation ##\frac{d}{dτ}(\frac{∂T}{∂\dot{x_μ}})-\frac{∂T}{∂x^μ}=0##, with μ=0 we get

$$
(1-\frac{r_S}{r})\frac{dt}{dτ}=const.
$$

Yes. This constant is usually called "energy at infinity" (more precisely it would be "energy per unit mass at infinity"). There is also another constant of the motion, since the metric is also independent of ##\varphi##.

cozycoz said:
if we compare the first and the last term, ##\frac{dt}{dτ}=\frac{E}{mc^2}## is the result that I think is correct. But my textbook tells## (1-\frac{r_S}{r})\frac{dt}{dτ}=\frac{E}{mc^2}##.

That's because your textbook is using ##E## to mean "energy at infinity" (and then dividing by the rest mass to get "energy per unit mass at infinity", as I said above). But you are using ##E## to mean "energy as measured by an observer momentarily at rest with respect to the object". Those are two different things, and only the first one (the one your textbook is using ##E## to mean) is a constant of the motion.
 
Oh I totally got it. Thanks a lot!
 
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...
Back
Top