B Gravity waves And entanglement quesro

Justice Hunter
Messages
98
Reaction score
7
So this is going to sound ridiculous, but I want to push my curiosity to the limit.

Gravitational waves propogate at the speed of light, like most things in the universe.

My first question is : is this propogation slowed down by anything? The Higgs field perhaps?

2nd question ; I assume that gravity waves act like other waves, and that they are susseptible to interference, and perhaps other quantum mechanical effects. Does this mean that excitations in a gravity field (graviton a) be entangled with another excitation in the field?

P.S. Sorry about spelling/grammar errors. I'm on a phone.
 
Physics news on Phys.org
The propagation of gravity waves is likely slowed down by mass carrying objects in the same way that light waves are slowed down by charge carrying objects. The gravitational energy causes the masses to oscillate, which in turn, produce minute secondary gravity waves at a time delay. This, with the main gravity wave, gives the effect of a decrease in speed in matter. In that sense, you could imagine a planet or a gas giant acting like a lens for gravity waves, but the index of refraction would be so close to that of a vacuum, there would be likely no observable effect. Plus, it might be that absorption would dominate over refraction, in which case the planet would be like an absorbing medium.

If real gravitons exist, then it is certainly possible for them to be entangled. If the two gravitons can interact, even indirectly, than that interaction could create entanglement. Also, if there were a kind of event that produces pairs of gravitons, those gravitons are likely entangled due to energy and momentum conservation.
 
  • Like
Likes Justice Hunter and Buzz Bloom
Justice Hunter said:
My first question is : is this propogation slowed down by anything? The Higgs field perhaps?
We do not have a proper quantum theory of gravity so far, but there is no indication that the Higgs field would give gravitons a mass.
Justice Hunter said:
Does this mean that excitations in a gravity field (graviton a) be entangled with another excitation in the field?
The coupling is way too weak for such an experiment, but theoretically with much stronger gravity, it would be possible.
 
  • Like
Likes Justice Hunter
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Back
Top