Green's Function Boundary Conditions

Click For Summary

Homework Help Overview

The discussion revolves around the application of Green's functions to solve a nonhomogeneous ordinary differential equation derived from the Poisson equation in a specific context. The original poster is attempting to compute the deflection potential and is confused about the appropriate boundary conditions for the problem, particularly in relation to the periodic nature of the variable involved.

Discussion Character

  • Exploratory, Assumption checking, Problem interpretation

Approaches and Questions Raised

  • The original poster attempts to solve the homogeneous equation associated with the ODE but expresses confusion regarding the boundary conditions, specifically questioning the validity of assuming zero values at the endpoints of the interval. Other participants point out that the original poster's chosen solutions are not linearly independent and challenge the assumption of boundary conditions being zero at both ends of the interval.

Discussion Status

Participants are actively questioning the assumptions made about boundary conditions and the nature of the solutions. There is a recognition that the problem may involve periodic boundary conditions, and some participants suggest that the choice of interval could be arbitrary. The discussion is ongoing, with no clear consensus reached yet.

Contextual Notes

The original poster references a specific paper and provides a detailed mathematical setup, indicating that they are working within the constraints of a particular academic context. The discussion includes references to historical teaching methods and the evolution of understanding regarding Green's functions and boundary conditions.

BOAS
Messages
546
Reaction score
19

Homework Statement


I am trying to fill in the gaps of a calculation (computing the deflection potential ##\psi##) in this paper:

http://adsabs.harvard.edu/abs/1994A&A...284..285K

We have the Poisson equation:

##\frac{1}{x}\frac{\partial}{\partial x} \left( x \frac{\partial \psi}{\partial x} \right) + \frac{1}{x^2} \frac{\partial^2 \psi}{\partial \varphi^2} = \frac{\sqrt{f}}{x \Delta(\varphi)}##,

where ##\Delta(\varphi) := \sqrt{\cos^2 \varphi + f^2 \sin^2 \varphi}##.

This is reduced to a nonhomogeneous ODE by the ansatz ##\psi(x, \varphi) = x \tilde \psi(\varphi)##, resulting in

##\tilde \psi + \frac{d^2 \tilde \psi}{d \varphi^2} = \frac{\sqrt{f}}{\Delta(\varphi)}##

The author states that we may solve this equation using Green's method.

Homework Equations

The Attempt at a Solution



(i'm new to this and trying to follow the description here: http://www.damtp.cam.ac.uk/user/dbs26/1BMethods/GreensODE.pdf)
[/B]
So, to begin with, I want to solve the homogeneous equation

##\tilde \psi + \frac{d^2 \tilde \psi}{d \varphi^2} = 0##

However, I am thoroughly confused about the boundary conditions I should employ here. If I use the interval ##[0, 2 \pi]##, which would seem to make sense given ##\varphi## is the polar angle, I end up with nonsense when I compute the homogeneous solutions satisfying the boundary conditions.

To illustrate what I mean:

If ##[0, 2 \pi]## is my interval, then my boundary conditions must be that ##\tilde \psi (0) = \tilde \psi ( 2 \pi) = 0##.

The general homogeneous solution to my equation is ##\tilde \psi = c_1 \sin \varphi + c_2 \cos \varphi##

so I say that ##y_1(\varphi) = \sin \varphi## and ##y_2 = \sin (2 \pi - \varphi)## satisfying the boundary conditions at ##\varphi = 0## and ##\varphi = 2 \pi## respectively.

So my Green's function is

##G(\varphi; \xi) = A(\xi) \sin \varphi## for ##0 \leq \varphi \leq \xi##

and

##G(\varphi; \xi) = -B(\xi) \sin \varphi## for ##\xi \leq \varphi \leq 2\pi##

Applying the continuity condition gives me that ##A(\xi) = - B(\xi)##

and the jump condition ##A(\xi)y'_1(\xi) - B(\xi)y'_2(\xi) = \frac{1}{\alpha(\xi)}##

leads me to the conclusion that ##0 = 1##...

Something is going horribly wrong but I don't know what
 
Physics news on Phys.org
Your ##y_1## and ##y_2## are not linearly independent.

There is no reason to assume the function value at 0 and 2pi to be zero.
 
Orodruin said:
Your ##y_1## and ##y_2## are not linearly independent.

There is no reason to assume the function value at 0 and 2pi to be zero.

I thought that the conditions on the Green's function meant that for any second order linear differential operator on [a,b], y(a) = y(b) = 0.
 
That is not true. It depends on the boundary conditions of the problem you are trying to solve. In your case, you are trying to solve an equation with a periodic boundary condition so your Green's function needs to satisfy periodic boundary conditions, nothing more. Note that the choice of what angle corresponds to ##\phi = 0## or ##2\pi## is completely arbitrary and your result should not depend on an arbitrary assignment of coordinates. Furthermore, you could just as well take the interval to be ##[-\pi,\pi)##.
 
BOAS said:

Homework Statement


I am trying to fill in the gaps of a calculation (computing the deflection potential ##\psi##) in this paper:

http://adsabs.harvard.edu/abs/1994A&A...284..285K

We have the Poisson equation:

##\frac{1}{x}\frac{\partial}{\partial x} \left( x \frac{\partial \psi}{\partial x} \right) + \frac{1}{x^2} \frac{\partial^2 \psi}{\partial \varphi^2} = \frac{\sqrt{f}}{x \Delta(\varphi)}##,

where ##\Delta(\varphi) := \sqrt{\cos^2 \varphi + f^2 \sin^2 \varphi}##.

This is reduced to a nonhomogeneous ODE by the ansatz ##\psi(x, \varphi) = x \tilde \psi(\varphi)##, resulting in

##\tilde \psi + \frac{d^2 \tilde \psi}{d \varphi^2} = \frac{\sqrt{f}}{\Delta(\varphi)}##

The author states that we may solve this equation using Green's method.

Homework Equations

The Attempt at a Solution



(i'm new to this and trying to follow the description here: http://www.damtp.cam.ac.uk/user/dbs26/1BMethods/GreensODE.pdf)
[/B]
So, to begin with, I want to solve the homogeneous equation

##\tilde \psi + \frac{d^2 \tilde \psi}{d \varphi^2} = 0##

However, I am thoroughly confused about the boundary conditions I should employ here. If I use the interval ##[0, 2 \pi]##, which would seem to make sense given ##\varphi## is the polar angle, I end up with nonsense when I compute the homogeneous solutions satisfying the boundary conditions.

To illustrate what I mean:

If ##[0, 2 \pi]## is my interval, then my boundary conditions must be that ##\tilde \psi (0) = \tilde \psi ( 2 \pi) = 0##.

The general homogeneous solution to my equation is ##\tilde \psi = c_1 \sin \varphi + c_2 \cos \varphi##

so I say that ##y_1(\varphi) = \sin \varphi## and ##y_2 = \sin (2 \pi - \varphi)## satisfying the boundary conditions at ##\varphi = 0## and ##\varphi = 2 \pi## respectively.

So my Green's function is

##G(\varphi; \xi) = A(\xi) \sin \varphi## for ##0 \leq \varphi \leq \xi##

and

##G(\varphi; \xi) = -B(\xi) \sin \varphi## for ##\xi \leq \varphi \leq 2\pi##

Applying the continuity condition gives me that ##A(\xi) = - B(\xi)##

and the jump condition ##A(\xi)y'_1(\xi) - B(\xi)y'_2(\xi) = \frac{1}{\alpha(\xi)}##

leads me to the conclusion that ##0 = 1##...

Something is going horribly wrong but I don't know what

Back in the Stone Age when I was learning this material we did not worry about boundary conditions on Green's functions. The idea of using a Green's function was just to get some particular solution to the non-homogeneous DE. The homogeneous part of the solution could then be used to impose boundary conditions. So, we can write the solution as
$$\tilde \psi = c_1 \tilde \psi_1 + c_2 \tilde \psi_2 + \tilde \psi_p,$$
where the ##c_i## are constants, ##\tilde \psi_1, \tilde \psi_2## are homogeneous solutions and ##\tilde \psi_p## is any particular solution. If you have boundary conditions on the final solution ##\tilde \psi##, these can be handled by adjusting the constants ##c_1## and ##c_2.##

However, I don't know: maybe things are taught differently nowadays.
 
Last edited:
Ray Vickson said:
Back in the Stone Age when I was learning this material we did not worry about boundary conditions on Green's functions. The idea of using a Green's function was just to get some particular solution to the non-homogeneous DE. The homogeneous part of the solution could then be used to impose boundary conditions. So, we can write the solution as
$$\tilde \psi = c_1 \tilde \psi_1 + c_2 \tilde \psi_2 + \tilde \psi_p,$$
where the ##c_i## are constants, ##\tilde \psi_1, \tilde \psi_2## are homogeneous solutions and ##\tilde \psi_p## is any particular solution. If you have boundary conditions on the final solution ##\tilde \psi##, these can be handled by adjusting the constants ##c_1## and ##c_2.##

However, I don't know: maybe things are taught differently nowadays.
I don't like this way of teaching it. It completely obscures the fact that a Green's function with appropriate boundary conditions can be used to take care also of inhomogeneous boundary conditions in many cases.

Edit: Also, in this case we are dealing with a periodic function so the Green's function must be periodic. You cannot just ignore this condition and solve it with boundary conditions (there is no boundary).
 
BOAS said:

Homework Statement


I am trying to fill in the gaps of a calculation (computing the deflection potential ##\psi##) in this paper:

http://adsabs.harvard.edu/abs/1994A&A...284..285K

We have the Poisson equation:

##\frac{1}{x}\frac{\partial}{\partial x} \left( x \frac{\partial \psi}{\partial x} \right) + \frac{1}{x^2} \frac{\partial^2 \psi}{\partial \varphi^2} = \frac{\sqrt{f}}{x \Delta(\varphi)}##,

where ##\Delta(\varphi) := \sqrt{\cos^2 \varphi + f^2 \sin^2 \varphi}##.

This is reduced to a nonhomogeneous ODE by the ansatz ##\psi(x, \varphi) = x \tilde \psi(\varphi)##, resulting in

##\tilde \psi + \frac{d^2 \tilde \psi}{d \varphi^2} = \frac{\sqrt{f}}{\Delta(\varphi)}##

The author states that we may solve this equation using Green's method.

Homework Equations

The Attempt at a Solution



(i'm new to this and trying to follow the description here: http://www.damtp.cam.ac.uk/user/dbs26/1BMethods/GreensODE.pdf)
[/B]
So, to begin with, I want to solve the homogeneous equation

##\tilde \psi + \frac{d^2 \tilde \psi}{d \varphi^2} = 0##

However, I am thoroughly confused about the boundary conditions I should employ here. If I use the interval ##[0, 2 \pi]##, which would seem to make sense given ##\varphi## is the polar angle, I end up with nonsense when I compute the homogeneous solutions satisfying the boundary conditions.

To illustrate what I mean:

If ##[0, 2 \pi]## is my interval, then my boundary conditions must be that ##\tilde \psi (0) = \tilde \psi ( 2 \pi) = 0##.

The general homogeneous solution to my equation is ##\tilde \psi = c_1 \sin \varphi + c_2 \cos \varphi##

so I say that ##y_1(\varphi) = \sin \varphi## and ##y_2 = \sin (2 \pi - \varphi)## satisfying the boundary conditions at ##\varphi = 0## and ##\varphi = 2 \pi## respectively.

So my Green's function is

##G(\varphi; \xi) = A(\xi) \sin \varphi## for ##0 \leq \varphi \leq \xi##

and

##G(\varphi; \xi) = -B(\xi) \sin \varphi## for ##\xi \leq \varphi \leq 2\pi##

Applying the continuity condition gives me that ##A(\xi) = - B(\xi)##

and the jump condition ##A(\xi)y'_1(\xi) - B(\xi)y'_2(\xi) = \frac{1}{\alpha(\xi)}##

leads me to the conclusion that ##0 = 1##...

Something is going horribly wrong but I don't know what

If you want to satisfy ##G(0; \xi) = G(2 \pi; \xi) = 0## as well as continuity of ##G(\varphi;\xi)## and the jump condition on ##G_\varphi(\varphi; \xi)## at ##\varphi = \xi##, you can do it by keeping more constants. For ## \xi \in (0,2\pi)##, let
$$G(\varphi;\xi) = \begin{cases} A_1 \cos(\varphi) + B_1 \sin(\varphi) & \text{if} \; 0 \leq \varphi < \xi\\
A_2 \cos(\varphi) + B_2 \sin(\varphi) & \text{if} \; \xi < \varphi \leq 2 \pi
\end{cases} $$
You have four conditions to be satisfied, and four constants to apply, so it is do-able.
 
I think @BOAS has the right of it: there is no such Green's function.

If you're looking for a linear combination of sines and cosines then you can write it as G(\varphi;\xi) = <br /> \begin{cases} <br /> C_1\cos(\varphi - \xi) + D_1\sin(\varphi - \xi) &amp; \varphi \in [0,\xi) \\ <br /> G_\xi &amp; \varphi = \xi \\<br /> C_2\cos(\varphi - \xi) + D_2\sin(\varphi - \xi) &amp; \varphi \in (\xi,2\pi) \end{cases}<br /> and the conditions to be satisfied at \varphi = \xi are then C_1 = G_\xi = C_2 and D_2 = D_1 + 1.

Now this function is 2\pi periodic in the sense that G(\varphi;\xi) = G(\varphi + 2\pi; \xi) for all \varphi \in [0,2\pi). However we also require continuity: \lim_{\varphi \to 2\pi^{-}} G(\varphi; \xi) = G(0,\xi). But we don't have this: instead <br /> G(0;\xi) - \lim_{\varphi \to 2\pi^{-}}G(\varphi;\xi) = (D_2 - D_1)\sin\xi = \sin\xi which does not hold for all \xi \in (0,2\pi). (The cases of \xi \in \{0, 2\pi\} - which should yield the same result - need separate treatment anyway.)

Explicitly imposing G(0;\xi) = G(2\pi;\xi) = 0 doesn't fix this problem: In @Ray Vickson's notation, you are immediately imposing A_1 = A_2 = 0 and are then left with <br /> (B_1 - B_2) \begin{pmatrix} \sin \xi \\ \cos \xi \end{pmatrix} = \begin{pmatrix} 0 \\ -1\end{pmatrix} which has a solution only for \xi = \pi - indeed infinitely many solutions in that case.

I hope I've missed something, because otherwise there seems to be a serious error in a published paper (which I have not had the opportunity to read myself).
 
pasmith said:
I think @BOAS has the right of it: there is no such Green's function.

If you're looking for a linear combination of sines and cosines then you can write it as G(\varphi;\xi) =<br /> \begin{cases}<br /> C_1\cos(\varphi - \xi) + D_1\sin(\varphi - \xi) &amp; \varphi \in [0,\xi) \\<br /> G_\xi &amp; \varphi = \xi \\<br /> C_2\cos(\varphi - \xi) + D_2\sin(\varphi - \xi) &amp; \varphi \in (\xi,2\pi) \end{cases}<br /> and the conditions to be satisfied at \varphi = \xi are then C_1 = G_\xi = C_2 and D_2 = D_1 + 1.

Now this function is 2\pi periodic in the sense that G(\varphi;\xi) = G(\varphi + 2\pi; \xi) for all \varphi \in [0,2\pi). However we also require continuity: \lim_{\varphi \to 2\pi^{-}} G(\varphi; \xi) = G(0,\xi). But we don't have this: instead <br /> G(0;\xi) - \lim_{\varphi \to 2\pi^{-}}G(\varphi;\xi) = (D_2 - D_1)\sin\xi = \sin\xi which does not hold for all \xi \in (0,2\pi). (The cases of \xi \in \{0, 2\pi\} - which should yield the same result - need separate treatment anyway.)

Explicitly imposing G(0;\xi) = G(2\pi;\xi) = 0 doesn't fix this problem: In @Ray Vickson's notation, you are immediately imposing A_1 = A_2 = 0 and are then left with <br /> (B_1 - B_2) \begin{pmatrix} \sin \xi \\ \cos \xi \end{pmatrix} = \begin{pmatrix} 0 \\ -1\end{pmatrix} which has a solution only for \xi = \pi - indeed infinitely many solutions in that case.

I hope I've missed something, because otherwise there seems to be a serious error in a published paper (which I have not had the opportunity to read myself).

If your first sentence means that there cannot be a periodic Green's function, then I agree. If ##\xi \in (0,2\pi)## implies that
$$G(\varphi; \xi) = \begin{cases} G_1(\varphi), & \varphi < \xi\\
G_2(\varphi), & \varphi > \xi
\end{cases}$$
then the form is pinned down by the anchor at ##\xi##, so that ##G(\varphi + 2 \pi n; \xi) = G_2(\varphi+2 \pi n)## and ##G(\varphi-2 \pi n; \xi) = G_1(\varphi-2 \pi n)## for all ##n \geq 1##. By adding multiples of ##2 \pi## to ##\varphi## we eliminate the "switching" from ##G_1## to ##G_2.## Of course, if we change both arguments we can have periodicity, so that ##G(\varphi \pm 2 \pi n; \xi \pm 2 \pi n) = G(\varphi; \xi)##
 
Last edited:

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
3
Views
2K