(adsbygoogle = window.adsbygoogle || []).push({}); [SOLVED] Greens Functions

1. The problem statement, all variables and given/known data

show:

[tex]\int\int\int_{D}\vec{F}\cdot\vec{G}dV = 0[/tex]

where:

[tex]\vec{F}=\nabla\phi[/tex]

[tex]\vec{G}=\nabla\psi[/tex]

[tex]\nabla\cdot\vec{F}=0[/tex]

[tex]\psi|_{\partial D}=0[/tex]

3. The attempt at a solution

This looks like a problem for Greens first theorem:

[tex]\int\int\int_{D}\phi\nabla^{2}\psi dV = \int\int_{\partial D}\phi\nabla\psi dS - \int\int\int_{D}\nabla\psi\cdot\nabla\phi dV[/tex]

The very right term is clearly the integral that I'm looking for. So, i will set it to look like the requested answer. Also, I know that

[tex]\psi|_{\partial D}=0[/tex]

meaning that I can also throw out the second term because that term wants me to integrate the gradient of psi over the surface, while I know that psi is 0 over the surface. So, I am left with this:

[tex]\int\int\int_{D}\phi\nabla^{2}\psi dV = - \int\int\int_{D}\vec{F}\cdot\vec{G} dV[/tex]

So, this means that the term on the left mus equal zero. Does anyone know how I can show this? Psi is not zero through the domain, and the problem doesn't specify that it is a harmonic potential (although I suppose it could be). Could someone please help me with this step? Any help at all is greatly appreciated.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Greens Functions

**Physics Forums | Science Articles, Homework Help, Discussion**