Group exercise for rotations of regular n-gon objects

LCSphysicist
Messages
644
Reaction score
162
Homework Statement
\
Relevant Equations
.
1608184421413.png

The doubt is about B and C.

b)
n = 4, $C = {I,e^{2\pi/4}}
n = 5, $C = {I,e^{2\pi/5}}
n = 6, $C = {I,e^{2\pi/6}}

Is this right?

c)
I am not sure what does he wants...
 
Last edited by a moderator:
Physics news on Phys.org
Well, let's start by case ##n=4## in part b):
What you have is essentially
$$\langle e, r^2\rangle$$
But, from part a), if you did it correctly, you should know that ##r^4=e## and therefore
$$\langle e, r^2\rangle = \{e, r^2\} \neq C_4$$
So no, what you have is not a generating set.
The same is true for case ##n=6## where
$$\langle e, r^2\rangle = \{e, r^2, r^4\}\neq C_6$$
You did it correctly for ##n=5## where
$$\langle e, r^2\rangle = \{e, r^2, r^4, r, r^3\} = G_5$$

Now, you should first correct the cases ##n=4,6## and then, for case ##n=5## is this the only minimal generating set?
 
  • Like
Likes Delta2
Gaussian97 said:
Well, let's start by case ##n=4## in part b):
What you have is essentially
$$\langle e, r^2\rangle$$
But, from part a), if you did it correctly, you should know that ##r^4=e## and therefore
$$\langle e, r^2\rangle = \{e, r^2\} \neq C_4$$
So no, what you have is not a generating set.
The same is true for case ##n=6## where
$$\langle e, r^2\rangle = \{e, r^2, r^4\}\neq C_6$$
You did it correctly for ##n=5## where
$$\langle e, r^2\rangle = \{e, r^2, r^4, r, r^3\} = G_5$$

Now, you should first correct the cases ##n=4,6## and then, for case ##n=5## is this the only minimal generating set?
Hello. I think i do not understand yet the b. You said that what i wrote in the first and third case is essentially the same as $\langle e, r^2\rangle$, but my aim was to be the same as $\langle e, r\rangle$. Can't i call it equal r? So technically $r^4 = e$
 
Herculi said:
Hello. I think i do not understand yet the b. You said that what i wrote in the first and third case is essentially the same as $\langle e, r^2\rangle$, but my aim was to be the same as $\langle e, r\rangle$. Can't i call it equal r? So technically $r^4 = e$
Oh yes, sorry my mistake, I read the exponential of ##4\pi## instead of the ##2\pi##. Then yes what you wrote is just ##\langle e, r \rangle## and it works for ##C_4## and ##C_6##, but as I have shown you for ##C_5##, ##\langle e, r^2\rangle## is also a minimal generating set. So now the question is, are there more minimal generating sets? You need to find them all.
 
I don't see why you have I in the generating sets. Isn't it redundant? Indeed, it mentions sets of size 2 for n=6, and I can see what they are, but your system would make them size 3.
Your list is incomplete for each of 4, 5, 6.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top