MHB Group homomorphism and subgroups

  • Thread starter Thread starter alberto1
  • Start date Start date
  • Tags Tags
    Group
alberto1
Messages
1
Reaction score
0
Hi,
I am having trouble with this question so it would be really nice if anyone could provide some help.

Let $$\phi: G \to G'$$ be a group homomorphism, and let $$H' \le G'$$ be a subgroup of G'.

a) Show that $$H=\phi^{-1}(H')$$ is a subgroup of G.
b) Now suppose H’ is a normal subgroup of G’. Does it follow that $$H=\phi^{-1}(H’)$$ is a normal subgroup of G?
c) Now suppose phi is surjective (but not that H’ is normal). Show that there is a bijective correspondence between $$K’ \le G’$$ containing H' and $$K \le G$$ containing H.

Thanks
 
Physics news on Phys.org
\phi : G \to G'
is a homomorphism
which means for every g_1,g_2 \in G
\phi(g_1*_{G} g_2 ) = \phi (g_1 ) *_{G'} \phi(g_2)

H' is a subgroup of G'
H=\phi ^{-1} ( H' )

the subgroup text is if h_1,h_2 \in H \; then h_1h_2^{-1} \in H
so let h_1 , h_2 \in H then there exist h_1 ' , h_2 ' \in H '
such that \phi^{-1} (h_1 ' ) = h_1 , \phi^{-1} (h_2 ' ) = h_2
\phi(h_1 ) = h_1 ' , \phi(h_2 ) = h_2 '
\phi(h_1h_2^{-1}) = \phi(h_1)(\phi(h_2))^{-1} = h_1' (h_2')^{-1} \in H
h_1h_2^{-1} \in \phi^{-1}(H) = H
the proof ends
note that from the homomorphism
\phi(h^{-1}) = ( \phi( h ) )^{-1}
 
Alberto said:
Hi,
I am having trouble with this question so it would be really nice if anyone could provide some help.

Let $$\phi: G \to G'$$ be a group homomorphism, and let $$H' \le G'$$ be a subgroup of G'.

a) Show that $$H=\phi^{-1}(H')$$ is a subgroup of G.
b) Now suppose H’ is a normal subgroup of G’. Does it follow that $$H=\phi^{-1}(H’)$$ is a normal subgroup of G?
c) Now suppose phi is surjective (but not that H’ is normal). Show that there is a bijective correspondence between $$K’ \le G’$$ containing H' and $$K \le G$$ containing H.

Thanks
Well.. I think you should submit your attempt along with the question too. That way you get help exactly where you are stuck and you get a lot more people willing to help you.
part a) Apply the "One step subgroup test". Let $a,b \in \phi^{-1}(H{'})$. Then $\phi (a), \phi (b) \in H{'}$. Thus $\phi (a), \phi (b^{-1}) \in H{'}$ (why?)
thus $\phi(ab^{-1}) \in H{'}$ and hence $ab^{-1} \in \phi ^{-1} (H{'})$. So by the one step subgroup test we have $\phi ^{-1} (H{'})$ is a subgroup of $G$.

For part b) and c) please show your attempt. If you are totally clueless on something that's fine too but do mention it.
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...
Back
Top