Group of particles in a magnetic field

AI Thread Summary
A group of charged particles, a proton and an electron, experiences forces in a magnetic field, leading to the calculation of the field's magnitude and direction. The proton, moving at 1.50 km/s in the +x-direction, experiences a force of 2.25 x 10^-16 N in the +y-direction, while the electron, moving at 4.75 km/s in the -z-direction, experiences a force of 8.50 x 10^-16 N in the +y-direction. The magnetic field's components were calculated, yielding a magnitude of 1.46 T, with a positive x component and a negative z component. The right-hand rule was applied to determine the field direction, confirming that the field aligns with the forces experienced by both particles. The discussion emphasizes the importance of consistent application of the right-hand rule and the additive nature of cross products in determining the magnetic field's characteristics.
fishturtle1
Messages
393
Reaction score
82

Homework Statement


A group of particles is traveling in a magnetic field of unknown magnitude and direction. You observe that a proton moving at 1.50 km/s in the +x-direction experiences a force of 2.25 x ##10^{-16}##N in the +y-direction, and an electron moving at 4.75 km/s in the -z-direction experiences a force of 8.50 x ##10^{-16}##N in the +y-direction. a) What are the magnitude and direction of the magnetic field?

Homework Equations


Right hand rule
F = |q|vB
##\vec F = qv##x##\vec B##

The Attempt at a Solution


info for proton:
##m_1 = 1.6727 * 10^{-27} kg##
##q_1 = +1.602 * 10^{-19} C##
##\vec v_1 = 1500 m/s## in the +x direction.
##\vec F_1 = 2.25 * 10^{-16} N## in the +y direction.

info for the electron:
##m_2 = 9.110 * 10^{-31} kg##
##q_2 = -1.602*10^{-19} C##
##\vec v_2 = 4750 m/s## in the -z direction
##\vec F_2 = 8.50 * 10^{-16} ## in the +y direction

,i'm pretty sure I solved for B correctly incase you want to skip this part..
##\vec B = <b_1, b_2, b_3>##then i do cross product to solve for the B components.

first equation, for proton:
##<0, 2.25 * 10^{-16}, 0> = q<1500, 0, 0>##x##<b_1, b_2, b_3>##
second equation, for electron:
##<0,8.50*10^{-16}, 0> = -q<0, 0, -4750>##x##<b_1, b_2, b_3>##
where ##q = +1.602*10^{-19}##

first equation simplifies to this:
##q<1500, 0, 0>##x##<b_1, b_2, b_3>##
##= q<0, -1500b_3, 1500b_2>##
## = <0, -1500b_3q, 1500b_2q##

second equation simplifies to this:
##-q<0, 0, -4750>##x##<b_1, b_2, b_3>##
##= -q<4750b_2, -4750b_1, 0>##
##= <-4750b_2q, 4750b_1q, 0>##

so now i have 2 equations:
##<0, 2.25 * 10^{-16}, 0> = <0, -1500b_3q, 1500b_2q##
##<0,8.50*10^{-16}, 0> = <-4750b_2q, 4750b_1q, 0>##

##b_3 = \frac {2.25*10^{-16}} {-1500q} = -.936##
##b_2 = 0##
##b_1 = \frac {8.50*10^{-16}} { 4750q} = 1.117##

##B = \sqrt {(-.936)^2 + (1.117)^2} = 1.46T##

now when i try to do the right hand rule.. i get confused
what i know is velocity direction is the thumb, force direction is the palm, and magnetic field direction are the fingers.

but there are 2 velocities and 2 forces... so i try to do it for both of them..

for the proton my thumb points toward me, my palm faces to my right, and so my fingers point toward the floor. So the magnetic field is South.

for the electron my thumb points toward the floor, my palm faces to my right, and so my fingers point away from me. So the magnetic field is in the -x direction.

How can I find the direction?
 
Physics news on Phys.org
First off, the two sets of forces and velocities must not contradict each other, this is a good way to ensure your answer is correct. You are to check each of them separately. What you said about the right hand rule is correct, and so is your calculation so let's go over the two particles:

(Important to note that the cross product is additive, so each of the two cross products can be broken down into a sum or cross products between the unit vectors. As you've calculated the B field has a positive x component and a negative z component, this already tells you the direction: somewhere between the x and z axises in that xz plane, the angle itl be from the x-axis will be arctan(b3/b1).)To check this field actually exerts the forces given we can use the right hand rule:

proton: Velocity is in the x direction and so is your thumb. now we look at the 2 components of the B-field:
b1: the x component is parallel to the velocity and therefore has no effect, cross product between two parellel vectors always gives 0.
b3: thumb with the x-axis and fingers at negative z gives positive y direction for your palm, as given in the question

electron: velocity is in the negative z direction and so is your thumb. examine both components of the vector:
b1: thumb to negative x and fingers (b1=B component in the x direction that you found) to the x direction leaves your palm facing the negative y direction. recall the electron charge is negative so we flip the direction (multiply by -1). we get the positive y direction again for the force, as given in the question.
b3: this component is parallel to the velocity and therefore has no effect.

make sure you're using a right handed cartesian coordinate system and that you are in fact using the right hand ! (i made that mistake in an exam once..)

Another way to see it: the cross product of two vectors ⃗v = ⟨v1, v2, v3⟩ and w⃗ = ⟨w1, w2, w3⟩ in space is

defined as the vector:
⃗v×w⃗ =⟨v2w3 −v3w2,v3w1 −v1w3,v1w2 −v2w1⟩.
 
Ok.. I followed your right hand rule steps to find the direction, thank you
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanged mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top