Group Theory, cyclic group proof

ripcity4545
Messages
16
Reaction score
0

Homework Statement



Prove that Z sub n is cyclic. (I can't find the subscript, but it should be the set of all integers, subscript n.)

Homework Equations

Let (G,*) be a group. A group G is cyclic if there exists an element x in G such that G = {(x^n); n exists in Z.}

(Z is the set of all integers)

The Attempt at a Solution



* is a binary operation, and for my purposes, is either additive (+) or multiplicative (x).

Multiplicative does not work because the multiplicative inverse of, say, 2 is not an integer. So the operation must be additive. So I can rewrite the equation for (G,+) as:

G = {nx; n exists in Z}

but that's where I get stuck. Thanks for the help!
 
Last edited:
Physics news on Phys.org
How about taking x = 1 as your generator?
 
Every cyclic group has a generator.

What is your generator in this case?

edit: nm already beaten too it
 
thanks to both!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top