Group theory, is my solution correct?

a1010711
Messages
8
Reaction score
0

Homework Statement



if H is a normal subgroup of G and has index n, show that g^n is in H for all g in G.



The Attempt at a Solution



Take H a normal subgroup of a group G. Take g in G.

Consider gH in the quotient group G/H. Because |G/H| = [G:H] = n, (gH)^n = eH.

But g^nH = (gH)^n = eH. Thus g^n is in H.


please tell me if this is right or what i need to add,, thanks for your help!
 
Physics news on Phys.org
This is a correct proof.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top