Group theory question about the N large limit

llorgos
Messages
18
Reaction score
0
Hi!

I keep hearing that in the large N limit (so I am talking in specific AdS/CFT but more general too I guess) U(N) and SU(N) are isomorphic. So if I construct, say, the ## \mathcal{N}=1 ## SYM Lagrangian in the large N limit, I can take as gauge group both of the ones mentioned above.

Why is this true?
 
Physics news on Phys.org
It's not, U(N) and SU(N) are never isomorphic. Maybe in the large N limit all the relevant physics is encoded in the SU(N) and any extra group factors from U(N) correspond to center of mass motion of the branes, but that concerns physics not group theory.
 
Many simplifications in the large-N limit are due to algebraic identities arising in contractions of su(N) matrices.

One example for fund-rep. generators T with adjoint-rep. index a=1..N2-1 is

##2\,T^a_{ij}\,T^a_{kl} = \delta_{il}\,\delta_{jk} - \frac{1}{N}\delta_{ij}\,\delta_{kl}##

and setting 1/N = 0 in the large-N limit. There are other identified for the anti-symm. structure constants f and the less well-known symm. structure constants d derived from this identity. In addition one can derive similar approximations for terms with three or more generators T.

Another approx. in 1+1 dim. QCD is valid for "mesonic" operators. If there are fields q carrying a fund-rep. index i you define

##Q(x,y) = \frac{1}{N}q_i(x)\,q_k(y)##

You may use a an approximation of Q in terms of the vev + mesonic fluctuations like

##Q(x,y) = \langle 0|Q(x-y)|0\rangle + \frac{1}{\sqrt{N}}\tilde{Q}(x,y) + \ldots##

which means that you have an 1/N expansion in terms of vev + free mesons + interaction terms.
 
Last edited:
I seem to notice a buildup of papers like this: Detecting single gravitons with quantum sensing. (OK, old one.) Toward graviton detection via photon-graviton quantum state conversion Is this akin to “we’re soon gonna put string theory to the test”, or are these legit? Mind, I’m not expecting anyone to read the papers and explain them to me, but if one of you educated people already have an opinion I’d like to hear it. If not please ignore me. EDIT: I strongly suspect it’s bunk but...
I'm trying to understand the relationship between the Higgs mechanism and the concept of inertia. The Higgs field gives fundamental particles their rest mass, but it doesn't seem to directly explain why a massive object resists acceleration (inertia). My question is: How does the Standard Model account for inertia? Is it simply taken as a given property of mass, or is there a deeper connection to the vacuum structure? Furthermore, how does the Higgs mechanism relate to broader concepts like...
Back
Top