Guidance on Matrices: Get a Better Understanding with Books/Videos

AI Thread Summary
The discussion centers on understanding matrices and determinants, particularly the reasoning behind matrix multiplication and the significance of determinants. Matrix multiplication is defined to facilitate notation for systems of linear equations and is fundamentally linked to linear maps, which provide a geometric perspective on the topic. The determinant serves a crucial role in determining the number of solutions to a system of equations and the invertibility of matrices, with geometric interpretations, such as representing the volume of a parallelepiped, enhancing comprehension.Participants recommend resources for deeper understanding, notably "Introduction to Linear Algebra" by Lang for beginners, which includes proofs, and Treil's "Linear Algebra Done Wrong," a more advanced and free resource. The conversation also emphasizes the importance of dedicating time to study matrices and encourages consistent practice to build interest and understanding.
Yashbhatt
Messages
348
Reaction score
13
Hello, I have been studying matrices and determinants recently and do not understand why certain things are done the way they are. Like, why is matrix multiplication defined the way it is.

I find that there are not enough proofs. Is there any book/article/video that any of you recommend to gain a better understanding of matrices and determinants?
 
Physics news on Phys.org
There is a bit of a pedagogical problem when introducing matrices and determinants. They are very useful tools and there are very good reasons to define them the way we do. But it is typically not immediately possible to tell the students about these reasons.

For multiplication of matrices, one preliminary reason could be that it gives us an easier notation to denote systems of linear equations. But the real reason of course is that multiplication of matrices come from a very geometrical object, namely the linear maps. Once you understand linear maps, you'll be convinced of the necessity of the matrix multiplication.

The determinant is a very complicated expression. But it essentially has one primary use, namely that it decides how many solutions a system of equations have. Or equivalently, it decides whether a matrix is invertible or not. There are many geometrical ways of seeing the determinant, a favorite one is that the determinant gives the volume of a parallelepiped.

A good introductory book (with proofs) is "Introduction to Linear Algebra" by Lang (be sure not to get his more advanced "Linear algebra"). https://www.amazon.com/dp/0387962050/?tag=pfamazon01-20
A very very good book (but also more advanced) is Treil's "Linear algebra done wrong": http://www.math.brown.edu/~treil/papers/LADW/LADW.html It is completely free too.
 
  • Like
Likes QuantumCurt and Yashbhatt
micromass said:
There is a bit of a pedagogical problem when introducing matrices and determinants. They are very useful tools and there are very good reasons to define them the way we do. But it is typically not immediately possible to tell the students about these reasons.

For multiplication of matrices, one preliminary reason could be that it gives us an easier notation to denote systems of linear equations. But the real reason of course is that multiplication of matrices come from a very geometrical object, namely the linear maps. Once you understand linear maps, you'll be convinced of the necessity of the matrix multiplication.

The determinant is a very complicated expression. But it essentially has one primary use, namely that it decides how many solutions a system of equations have. Or equivalently, it decides whether a matrix is invertible or not. There are many geometrical ways of seeing the determinant, a favorite one is that the determinant gives the volume of a parallelepiped.

A good introductory book (with proofs) is "Introduction to Linear Algebra" by Lang (be sure not to get his more advanced "Linear algebra"). https://www.amazon.com/dp/0387962050/?tag=pfamazon01-20
A very very good book (but also more advanced) is Treil's "Linear algebra done wrong": http://www.math.brown.edu/~treil/papers/LADW/LADW.html It is completely free too.

Thanks. I'll try them. How advanced are linear maps?
 
Yashbhatt said:
Thanks. I'll try them. How advanced are linear maps?

Depends on which book you read. But most introductory books treat them rather well. They should be easy once you realize that they are nothing more than generalization of very familiar things: rotations, reflections, etc.
 
micromass said:
The determinant is a very complicated expression. But it essentially has one primary use, namely that it decides how many solutions a system of equations have. Or equivalently, it decides whether a matrix is invertible or not. There are many geometrical ways of seeing the determinant, a favorite one is that the determinant gives the volume of a parallelepiped.

I don't think I really understood determinants qualitatively until I used the triple scalar product in Calc 3 to find the volume of a parallelepiped.

A good introductory book (with proofs) is "Introduction to Linear Algebra" by Lang (be sure not to get his more advanced "Linear algebra"). https://www.amazon.com/dp/0387962050/?tag=pfamazon01-20
A very very good book (but also more advanced) is Treil's "Linear algebra done wrong": http://www.math.brown.edu/~treil/papers/LADW/LADW.html It is completely free too.

I second the suggestion of Lang's book. As you point out, be sure to get the intro book. I accidentally got 'Linear Algebra' instead of 'Intro to Linear Algebra' at first, and quickly got in very well over my head.
 
Last edited by a moderator:
Yashbhatt said:
Hello, I have been studying matrices and determinants recently and do not understand why certain things are done the way they are. Like, why is matrix multiplication defined the way it is.

I find that there are not enough proofs. Is there any book/article/video that any of you recommend to gain a better understanding of matrices and determinants?

give enough time to the problems. do not see your watch again and again. plan for atleast 1 hour a day for matrices. then after somedays interest will be build up
 
Hey, I am Andreas from Germany. I am currently 35 years old and I want to relearn math and physics. This is not one of these regular questions when it comes to this matter. So... I am very realistic about it. I know that there are severe contraints when it comes to selfstudy compared to a regular school and/or university (structure, peers, teachers, learning groups, tests, access to papers and so on) . I will never get a job in this field and I will never be taken serious by "real"...
Yesterday, 9/5/2025, when I was surfing, I found an article The Schwarzschild solution contains three problems, which can be easily solved - Journal of King Saud University - Science ABUNDANCE ESTIMATION IN AN ARID ENVIRONMENT https://jksus.org/the-schwarzschild-solution-contains-three-problems-which-can-be-easily-solved/ that has the derivation of a line element as a corrected version of the Schwarzschild solution to Einstein’s field equation. This article's date received is 2022-11-15...
Back
Top