Hamiltonian conjugate dynamic variables

thecourtholio
Messages
18
Reaction score
1

Homework Statement


Consider a charge ##q##, with mass ##m##, moving in the ##x-y## plane under the influence of a uniform magnetic field ##\vec{B}=B\hat{z}##. Show that the Hamiltonian $$ H = \frac{(\vec{p}-q\vec{A})^2}{2m}$$ with $$\vec{A} = \frac{1}{2}(\vec{B}\times\vec{r})$$ reduces to $$ H(x,y,p_x,p_y) = \frac{(p_x+\frac{1}{2}qBy)^2}{2m} + \frac{(p_y-\frac{1}{2}qBx)^2}{2m}$$
Demonstrate
$$ Q = \frac{(p_x+\frac{1}{2}qBy)}{qB} \qquad \qquad P = (p_y-\frac{1}{2}qBx) $$
are conjugate dynamic variables, given ##x, p_x, y, p_y## are, then express $$H(Q,P)$$ in terms of ##m## and the cyclotron frequency, ##\omega \frac{qB}{m}##

Show next that
$$ P' = \frac{(p_x-\frac{1}{2}qBy)}{qB} \qquad \qquad Q' = (p_y+\frac{1}{2}qBx) $$
Are yet another, linearly-independent, conjugate pair whose brackets with ##Q,P## necessarily vanish, i.e.
$$ [Q,Q'] = [Q,P'] = [P,Q'] = [P,P'] = 0 $$
Argue from the foregoing that ##Q',P'## must be constants of the motion

Homework Equations


Most are listed in problem statement. Definition of poisson bracket (PB): $$ [Q,P] = \frac{\partial Q}{\partial q}\frac{\partial P}{\partial p} - \frac{\partial Q}{\partial p}\frac{\partial P}{\partial q} $$
Fundamental PBs: ## [q_i,q_k] = [p_i,p_k] = 0, \ \ [q_i,p_k] = \delta_{ik}##

The Attempt at a Solution


My main question is, how exactly do I show that ##Q,P## are conjugate dynamical variables? Is this just by evaluating the PBs ##[Q_i, Q_k], [P_i, P_k], \text{ and } [Q_i,P_k]## and proving they preserve the fundamental PBs? So far, I have found
$$ [Q_i, Q_k]_{q,p} = 0 $$
And
$$ [P_i,P_k]_{q,p} = 0$$
But for ##[Q_i,P_k]_{q,p}## I find
$$ [Q_i,P_k]_{q,p} = \frac{1}{2}+\frac{1}{2}qB \neq 1 (or \neq \delta_{ik})$$
So is this not what I need to be doing or am I just evaluating it wrong?

And as for expressing the Hamiltonian as functions of ##Q## and ##P##, what do I need to do? My prof kind of worked out finding ##H(q(Q,P), p(Q,P))## for a harmonic oscillator by seeking a transformation of the form ##H(q(Q,P),p(Q,P)) = \frac{f^2(P)}{2m}##, but I'm having trouble figureing out how to do it in the reverse, like ##H(Q(q,p), P(q,p))## for this problem.
 
Physics news on Phys.org
I'm not clear why, given the problem statement, you are using subscripts on the proposed conjugate variables of P and Q. There are just the two as I read the problem.
I get the correct Poisson bracket relations on [Q,P] so check your work.
 
jambaugh said:
I'm not clear why, given the problem statement, you are using subscripts on the proposed conjugate variables of P and Q. There are just the two as I read the problem.
I get the correct Poisson bracket relations on [Q,P] so check your work.

I was just using the indecies as good practice so i remember to use all indecies of Q or P later if they need it. But for [Q,P] I find
$$[Q,P] = \bigg[\frac{\partial Q}{\partial x}\frac{\partial P}{\partial p_x} - \frac{\partial Q}{\partial p_x}\frac{\partial P}{\partial x}\bigg] + \bigg[ \frac{\partial Q}{\partial y}\frac{\partial P}{\partial p_y} - \frac{\partial Q}{\partial p_y}\frac{\partial P}{\partial y}\bigg]$$
Where ##\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial p_x} = \frac{\partial Q}{\partial p_y} = 0## which make the PB
$$[Q,P] = -\frac{\partial Q}{\partial p_x}\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y}\frac{\partial P}{\partial p_y} = -(\frac{1}{qB})(-\frac{1}{2}qB) + (\frac{1}{2}qB)(1) = \frac{1}{2}+ \frac{1}{2}qB$$ so where am I going wrong?
 
\partial Q / \partial y = \tfrac{1}{2} , \partial P/\partial p_y = 1 So total bracket is \tfrac{1}{2} + \tfrac{1}{2} = 1 . Or did I mess up?
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top