Hamiltonian For The Simple Harmonic Oscillator

morangta
Messages
23
Reaction score
0
I am reading an article on the "energy surface" of a Hamiltonian. For a simple harmonic oscillator, I am assuming this "energy surface" has one (1) degree of freedom. For this case, the article states that the "dimensionality of phase space" = 2N = 2 and "dimensionality of the energy surface" = 2N-1 = 1.

Adjusting x gives H = ω (p + x). That's H = ω(p*p + x*x).

When I plot the energy surface for H, I get a 3-dimensional paraboloid plotted against the x-p plane. Or, lines of constant H are 2-dimensional circles in the p-x plane. What energy surface would be 2N-1 = one (1)-dimensional here? Am not trying to quibble about terminology here. Just want to know if I am missing something.

Thanks for reading.
 
Physics news on Phys.org
Hi.
I assume N refers to the number of spatial dimensions, so in the case of a one-dimensional oscillator your phase space is indeed two-dimensional while the energy "surface" is a line (i.e. one-dimensional).
In general, you understand how phase space volume would be 2N-dimensional; now the harmonic oscillator equation always determines a hypersphere (E = x^2 + y^2 +...), so the dimensionality of the hyper-surface is naturally one dimension less than the volume: 2N–1...
 
  • Like
Likes hisacro
I get it now. Thanks so much for your fast reply.
Ted
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top