Piano man
- 73
- 0
Hi, I'm trying to find the Hamiltonian for a system using cylindrical coordinates.
I start of with the Lagrangian L=\frac{1}{2}m(\dot{r}^2+r^2\dot{\theta}^2+\dot{z}^2)-U(r,\theta,z)
From that, using H=\sum p\dot{q}-L
=p_r\dot{r}+p_\theta\dot{\theta}+p_z\dot{z}-\frac{1}{2}m(\dot{r}^2+r^2\dot{\theta}^2+\dot{z}^2)+U(r,\theta,z)
=\frac{1}{m}(p_r^2+p_\theta^2+p_z^2)-\frac{1}{2m}(p_r^2+p_\theta^2r^2+p_z^2)+U(r,\theta,z)
=\frac{1}{2m}[p_r^2+(2-r^2)p_\theta^2+p_z^2]+U(r,\theta,z)
But the standard answer is
H=\frac{1}{2m}(p_r^2+\frac{p_\theta^2}{r^2}+p_z^2)+U(r,\theta,z)
So where did I go wrong?
Thanks for any help :)
I start of with the Lagrangian L=\frac{1}{2}m(\dot{r}^2+r^2\dot{\theta}^2+\dot{z}^2)-U(r,\theta,z)
From that, using H=\sum p\dot{q}-L
=p_r\dot{r}+p_\theta\dot{\theta}+p_z\dot{z}-\frac{1}{2}m(\dot{r}^2+r^2\dot{\theta}^2+\dot{z}^2)+U(r,\theta,z)
=\frac{1}{m}(p_r^2+p_\theta^2+p_z^2)-\frac{1}{2m}(p_r^2+p_\theta^2r^2+p_z^2)+U(r,\theta,z)
=\frac{1}{2m}[p_r^2+(2-r^2)p_\theta^2+p_z^2]+U(r,\theta,z)
But the standard answer is
H=\frac{1}{2m}(p_r^2+\frac{p_\theta^2}{r^2}+p_z^2)+U(r,\theta,z)
So where did I go wrong?
Thanks for any help :)