shizzle
- 21
- 0
Hamilton equations of flyball governor
I'm trying to find
1. The Hamiltonian
2. The Hamilton equation of motion for the flyball governor shown in problem 2 here
http://www.srl.caltech.edu/phys106/1999/Homework3.pdf
This is what i have. Can someone tell me if I'm right?
<br /> \begin{gather*}<br /> L = ml^2\dot{\theta}^2+ ml^2\omega^2\sin^2\theta + 2Ml^2\dot{\theta}^2\sin^2\theta +2(m+M)gl\cos\theta\\<br /> <br /> H = ml^2\dot{\theta}^2+ ml^2\omega^2\sin^2\theta + 2Ml^2\dot{\theta}^2\sin^2\theta -2(m+M)gl\cos\theta\\<br /> <br /> <br /> \partial{L}/\partial\dot{\theta} = 2ml^2\dot{\theta} + 4Ml^2\dot{\theta}\sin^2\theta = P_\theta\\<br /> <br /> \dot{\theta} =P_\theta/2ml^2\dot{\theta} + 4Ml^2\dot{\theta}\sin^2\theta\\<br /> <br /> \partial{H}/\partial{P_\theta} = P_\theta/2ml^2\dot{\theta} + 4Ml^2\dot{\theta}\sin^2\theta = \dot{\theta}\\<br /> <br /> \partial{H}/\partial\theta = 2ml^2\omega^2\sin\theta\cos\theta +4Ml^2\dot{\theta}^2\sin\theta\cos\theta + 2(m+M)gl\sin\theta = -\dot{P_\theta}\\<br /> -\dot{P_\theta}=-(ml^2\ddot{\theta}+4Ml^2\ddot{\theta}\sin^2\theta<br /> \\<br /> equating the two equations and solving for theta double dot, we get\\<br /> <br /> \ddot{\theta} = \frac{ml\omega^2\sin\theta\cos\theta+2Ml\dot{\theta}^2\sin\theta\cos\theta-(m+M)g\sin\theta}{l(m+2M\sin^2\theta)}\\<br /> <br /> \end{gather*}
I'm trying to find
1. The Hamiltonian
2. The Hamilton equation of motion for the flyball governor shown in problem 2 here
http://www.srl.caltech.edu/phys106/1999/Homework3.pdf
This is what i have. Can someone tell me if I'm right?
<br /> \begin{gather*}<br /> L = ml^2\dot{\theta}^2+ ml^2\omega^2\sin^2\theta + 2Ml^2\dot{\theta}^2\sin^2\theta +2(m+M)gl\cos\theta\\<br /> <br /> H = ml^2\dot{\theta}^2+ ml^2\omega^2\sin^2\theta + 2Ml^2\dot{\theta}^2\sin^2\theta -2(m+M)gl\cos\theta\\<br /> <br /> <br /> \partial{L}/\partial\dot{\theta} = 2ml^2\dot{\theta} + 4Ml^2\dot{\theta}\sin^2\theta = P_\theta\\<br /> <br /> \dot{\theta} =P_\theta/2ml^2\dot{\theta} + 4Ml^2\dot{\theta}\sin^2\theta\\<br /> <br /> \partial{H}/\partial{P_\theta} = P_\theta/2ml^2\dot{\theta} + 4Ml^2\dot{\theta}\sin^2\theta = \dot{\theta}\\<br /> <br /> \partial{H}/\partial\theta = 2ml^2\omega^2\sin\theta\cos\theta +4Ml^2\dot{\theta}^2\sin\theta\cos\theta + 2(m+M)gl\sin\theta = -\dot{P_\theta}\\<br /> -\dot{P_\theta}=-(ml^2\ddot{\theta}+4Ml^2\ddot{\theta}\sin^2\theta<br /> \\<br /> equating the two equations and solving for theta double dot, we get\\<br /> <br /> \ddot{\theta} = \frac{ml\omega^2\sin\theta\cos\theta+2Ml\dot{\theta}^2\sin\theta\cos\theta-(m+M)g\sin\theta}{l(m+2M\sin^2\theta)}\\<br /> <br /> \end{gather*}
Last edited: