estro
- 239
- 0
Homework Statement
\mbox {1. If f(x) is a positive and continuous function in [1,\infty)\ and\ \lim_{x\rightarrow \infty} f(x)=0 }
\mbox {Prove or contradict:}\\<br /> \mbox { If } \sum_{n=1}^\infty f(n) \ \mbox {is converget then} \ \int_{1}^\infty f(x)dx \ \mbox {is also convergent.}
\mbox {2. If f(x) is a positive and continuous function in [1,\infty)}
\mbox {Prove or contradict:}\\ <br /> \mbox { If } \int_{1}^\infty f(x)dx \ \mbox {is converget then} \ \sum_{n=1}^\infty f(n) \ \mbox {is also convergent.}
The Attempt at a Solution
[Edit] Counterexample for (1):
\sum_{n=1}^\infty \frac{\sin^2{(n\Pi)}}{n} \ \mbox{is convergent but } \int_{1}^\infty \frac{\sin^2{(x\Pi)}}{x}dx\ \mbox{ is divergent}[Edit] Counterexample for (2): (Still only idea)
I should somehow formally define function which is 0 most of the time but every time x is near integer n the function "draws" a triangle with area of (1/2)^n.
Last edited: