Harmonic oscillator in Heisenberg picture

dyn
Messages
774
Reaction score
63
For the harmonic oscillator in 1-D we get the 2nd time derivative of the x Heisenberg operator = -ω2 x. When that is integrated it gives xH (t) = Acos(ω t) +Bsin (ω t) where A and B are time independent operators. My question is why are the constants A and B incorporated into the terms as a multiplicative factor instead of being additive constants ? And what would happen if the term to be integrated already had an operator in it. you wouldn't know whether to place the multiplicative constant before or after the other operator ?
 
Physics news on Phys.org
a = \ddot x = -\omega^2 x

These constants are multiplied because when you sub it back in it should give LHS = RHS.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!

Similar threads

Back
Top