Harmonic Oscillator Problem: Energy Levels & Ground State

Metallichem
Messages
3
Reaction score
0
Problem:
Consider a harmonic oscillator of mass m undergoing harmonic motion in two dimensions x and y. The potential energy is given by
V(x,y) = (1/2)kxx2 + (1/2)kyy2.
(a) Write down the expression for the Hamiltonian operator for such a system.
(b) What is the general expression for the allowable energy levels of the two-dimensional harmonic oscillator?
(c) What is the energy of the ground state (the lowest energy state)?

Hint: The Hamiltonian operator can be written as a sum of operators.

Now I'm a bit lost on how to write the expression for the Hamiltonian.
Is the Hamiltonian simply H = - h2/2m d2/dx2 + V(x,y) [where V(x,y) is given above]?
Then with that Hamiltonian, solving the Schrodinger eqn is pretty straightforward to get H*psi = E*psi, now I'm a bit lost here as well to solve for the general expression for the allowable energy levels?
 
Physics news on Phys.org
Metallichem said:
Problem:
Consider a harmonic oscillator of mass m undergoing harmonic motion in two dimensions x and y. The potential energy is given by
V(x,y) = (1/2)kxx2 + (1/2)kyy2.
(a) Write down the expression for the Hamiltonian operator for such a system.
(b) What is the general expression for the allowable energy levels of the two-dimensional harmonic oscillator?
(c) What is the energy of the ground state (the lowest energy state)?

Hint: The Hamiltonian operator can be written as a sum of operators.

Now I'm a bit lost on how to write the expression for the Hamiltonian.
Is the Hamiltonian simply H = - h2/2m d2/dx2 + V(x,y) [where V(x,y) is given above]?
Almost. You need to include a term for the kinetic energy due to movement in the y-direction.

Then with that Hamiltonian, solving the Schrodinger eqn is pretty straightforward to get H*psi = E*psi, now I'm a bit lost here as well to solve for the general expression for the allowable energy levels?
Have you solved the one-dimensional harmonic oscillator already?
 
I can represent the Hamiltonian as a sum of operators like this?
\hat{H} = \hat{H_x} + \hat{H_y}
 
Yes, depending on what you mean by Hx and Hy.
 
I get this, this is the general expresion of Hamiltonian Operator for the Quantum Harmonic Oscillator ??

[-ħ/2m (d^2 Ψ_x)/(dx^2 )+1/2 k_x x^2 Ψ_x ]+[-ħ/2m (d^2 Ψ_y)/(dy^2 )+1/2 k_y y^2 Ψ_y ]= EΨ_x Ψ_y
 
Part (a) is simply asking you for the operator ##\hat{H}##. The wave function doesn't appear in that expression. You wrote in your first post
$$\hat{H} = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + V(x,y)$$ which isn't correct, but it's essentially the type of answer you want to give for (a). You just need to correct it, which I think you know how to do.

The Schrodinger equation says what happens when you apply that operator to a wave function:
$$\hat{H}\psi(x,y) = \hat{H}_x \psi(x,y) + \hat{H}_y \psi(x,y) = E \psi(x,y)$$ Note that the two pieces act on the same function. If you assume the solution has the form ##\psi(x,y) = \psi_x(x)\psi_y(y)##, you'll get something similar to what you have. Your expression isn't quite correct. You're getting there though.
 
To solve this, I first used the units to work out that a= m* a/m, i.e. t=z/λ. This would allow you to determine the time duration within an interval section by section and then add this to the previous ones to obtain the age of the respective layer. However, this would require a constant thickness per year for each interval. However, since this is most likely not the case, my next consideration was that the age must be the integral of a 1/λ(z) function, which I cannot model.
Back
Top