I Harmonic oscillator: Why not chaotic?

AI Thread Summary
The discussion centers on the nature of harmonic oscillators and their classification as chaotic or not. It is noted that harmonic oscillators are typically not considered chaotic because their motion is predictable and linear over time, despite phase errors accumulating due to imprecise angular frequency. The unpredictability of phase modulo 2π is acknowledged, but this does not meet the criteria for chaos, which requires more complex behavior. In contrast, nonlinear oscillators, such as the Duffing and van der Pol oscillators, can exhibit chaotic motion. The distinction between linear and nonlinear systems is crucial in understanding the dynamics of chaos.
greypilgrim
Messages
579
Reaction score
44
Hi.

As far as I know, the movement of a harmonic oscillator normally is not considered to be chaotic. Why not? Since the angular frequency can never be known to absolute precision, an error in the phase builds up. I can see that this build-up is only linear in time (if we assume the angular frequency to be constant), but since the phase only matters modulo 2π, φ(t) mod 2π is completely unpredictable time after some long enough time t. Isn't this exactly what chaos is about?
 
Physics news on Phys.org
Does labeling it "chaotic" or not change the physics in any way?
 
greypilgrim said:
Hi.

As far as I know, the movement of a harmonic oscillator normally is not considered to be chaotic. Why not? Since the angular frequency can never be known to absolute precision, an error in the phase builds up. I can see that this build-up is only linear in time (if we assume the angular frequency to be constant), but since the phase only matters modulo 2π, φ(t) mod 2π is completely unpredictable time after some long enough time t. Isn't this exactly what chaos is about?

Would you call the motion of a pendulum chaotic?
 
greypilgrim said:
Hi.

As far as I know, the movement of a harmonic oscillator normally is not considered to be chaotic. Why not? Since the angular frequency can never be known to absolute precision, an error in the phase builds up. I can see that this build-up is only linear in time (if we assume the angular frequency to be constant), but since the phase only matters modulo 2π, φ(t) mod 2π is completely unpredictable time after some long enough time t. Isn't this exactly what chaos is about?

Perhaps you are not being sufficiently specific here- a linear oscillator, whether driven, damped, or both, will never display chaotic motion. Chaotic motion has a fairly specific definition in terms of a geometrical approach to the solution of ordinary differential equations:

https://en.wikipedia.org/wiki/Attractor

Nonlinear oscillators can indeed display chaotic motion: Duffing and van der Pol oscillators are two common examples.
 
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...
Back
Top