Harmonic oscillator with ladder operators - proof using the Sum Rule

chocopanda
Messages
15
Reaction score
1
Homework Statement
Verify the proof of the sum rule for the one-dimensional harmonic oscillator:
$$\sum_l^\infty (E_l-E_n)\ | \langle l \ |p| \ n \rangle |^2 = \frac {mh^2w^2}{2} $$
Relevant Equations
The exercise explicitly says to use laddle operators and to express $p$ with
$$b=\sqrt{\frac {mw}{2 \hbar}}-\frac {ip}{\sqrt{2 \hbar mw}} $$
$$b^\dagger =\sqrt{\frac {mw}{2 \hbar}}+\frac {ip}{\sqrt{2 \hbar mw}} $$
I'm trying verify the proof of the sum rule for the one-dimensional harmonic oscillator:
$$\sum_l^\infty (E_l-E_n)\ | \langle l \ |p| \ n \rangle |^2 = \frac {mh^2w^2}{2} $$
The exercise explicitly says to use laddle operators and to express $p$ with
$$b=\sqrt{\frac {mw}{2 \hbar}}-\frac {ip}{\sqrt{2 \hbar mw}} $$
$$b^\dagger =\sqrt{\frac {mw}{2 \hbar}}+\frac {ip}{\sqrt{2 \hbar mw}} $$

For p I get $$p=i \sqrt{\frac{\hbar}{2mw}} (b-b^\dagger) $$

To solve the exercise, we need to calculate the left side. I'm still very much a novice and am not very sure how to use the ladder operators... To start, I at least tried to expand the bra-ket:
$$\sum_l^\infty (E_l-E_n)\ \langle l \ |p| \ n \rangle \langle n \ |p| \ l \rangle $$
and tried to insert the p I solved:
$$\sum_l^\infty (E_l-E_n)\ (-\frac{\hbar}{2mw}) \langle l \ |b-b^\dagger| \ n \rangle \langle n \ |b-b^\dagger| \ l \rangle $$
is this correct? If yes, how do I continue? The hint says to probably use $$H|n\rangle=\hbar(n+\frac 12)|n\rangle$$ and I know that $$H|n\rangle=E|n\rangle$$
 
Physics news on Phys.org
chocopanda said:
To start, I at least tried to expand the bra-ket:
$$\sum_l^\infty (E_l-E_n)\ \langle l \ |p| \ n \rangle \langle n \ |p| \ l \rangle $$
I wouldn't do that right away. I would start by calculating ##\langle l \ |p| \ n \rangle## first, and then consider the absolute value squared.

chocopanda said:
and tried to insert the p I solved:
$$\sum_l^\infty (E_l-E_n)\ (-\frac{\hbar}{2mw}) \langle l \ |b-b^\dagger| \ n \rangle \langle n \ |b-b^\dagger| \ l \rangle $$
is this correct? If yes, how do I continue?
Calculate ##(b-b^\dagger) |n\rangle##.
 
DrClaude said:
I wouldn't do that right away. I would start by calculating ##\langle l \ |p| \ n \rangle## first, and then consider the absolute value squared.Calculate ##(b-b^\dagger) |n\rangle##.

Hello DrClaude, thank you for replying. I tried to do what you suggested:

$$| \langle l|p|n \rangle |^2 = \langle n|p^2|n\rangle = \frac{h}{2mw} (2n+1) $$
That's my result. How would I continue?
 
chocopanda said:
Hello DrClaude, thank you for replying. I tried to do what you suggested:

$$| \langle l|p|n \rangle |^2 = \langle n|p^2|n\rangle = \frac{h}{2mw} (2n+1) $$
That's my result. How would I continue?
That's not correct. How can the bra ##\langle l |## even become ##\langle n |##?

As I said, forget the absolute value squared for now. Start by calculating ##(b-b^\dagger) |n\rangle## and then apply that to ## \langle l|p|n \rangle##.
 
Are you forced to do it in that complicated way? It's simpler to use the commutation relations, ##[\hat{x},\hat{p}]=?##, ##[\hat{H},\hat{x}]=?## as well as to think about what's
$$\sum_{i} |\langle n|\hat{O}|i \rangle|^2=?$$
for a general operator ##\hat{O}##.
 
  • Like
Likes PhDeezNutz
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top