Harmonic oscillator with ladder operators - proof using the Sum Rule

Click For Summary
SUMMARY

The forum discussion focuses on verifying the proof of the sum rule for the one-dimensional harmonic oscillator using ladder operators. The key equation discussed is $$\sum_l^\infty (E_l-E_n)\ | \langle l \ |p| \ n \rangle |^2 = \frac {mh^2w^2}{2}$$. Participants explore the expression for momentum $$p$$ in terms of ladder operators $$b$$ and $$b^\dagger$$, leading to $$p=i \sqrt{\frac{\hbar}{2mw}} (b-b^\dagger)$$. The discussion emphasizes the importance of calculating $$\langle l |p| n \rangle$$ and applying commutation relations for simplification.

PREREQUISITES
  • Understanding of quantum mechanics concepts, specifically harmonic oscillators.
  • Familiarity with ladder operators and their applications in quantum mechanics.
  • Knowledge of commutation relations, particularly $$[\hat{x},\hat{p}]$$ and $$[\hat{H},\hat{x}]$$.
  • Proficiency in manipulating bra-ket notation and quantum state representations.
NEXT STEPS
  • Calculate the action of $$b-b^\dagger$$ on the state $$|n\rangle$$.
  • Explore the implications of commutation relations in quantum mechanics.
  • Study the derivation of the energy eigenvalues for the harmonic oscillator.
  • Investigate the properties of the momentum operator in quantum mechanics.
USEFUL FOR

Students and researchers in quantum mechanics, particularly those studying harmonic oscillators and the application of ladder operators in quantum systems.

chocopanda
Messages
15
Reaction score
1
Homework Statement
Verify the proof of the sum rule for the one-dimensional harmonic oscillator:
$$\sum_l^\infty (E_l-E_n)\ | \langle l \ |p| \ n \rangle |^2 = \frac {mh^2w^2}{2} $$
Relevant Equations
The exercise explicitly says to use laddle operators and to express $p$ with
$$b=\sqrt{\frac {mw}{2 \hbar}}-\frac {ip}{\sqrt{2 \hbar mw}} $$
$$b^\dagger =\sqrt{\frac {mw}{2 \hbar}}+\frac {ip}{\sqrt{2 \hbar mw}} $$
I'm trying verify the proof of the sum rule for the one-dimensional harmonic oscillator:
$$\sum_l^\infty (E_l-E_n)\ | \langle l \ |p| \ n \rangle |^2 = \frac {mh^2w^2}{2} $$
The exercise explicitly says to use laddle operators and to express $p$ with
$$b=\sqrt{\frac {mw}{2 \hbar}}-\frac {ip}{\sqrt{2 \hbar mw}} $$
$$b^\dagger =\sqrt{\frac {mw}{2 \hbar}}+\frac {ip}{\sqrt{2 \hbar mw}} $$

For p I get $$p=i \sqrt{\frac{\hbar}{2mw}} (b-b^\dagger) $$

To solve the exercise, we need to calculate the left side. I'm still very much a novice and am not very sure how to use the ladder operators... To start, I at least tried to expand the bra-ket:
$$\sum_l^\infty (E_l-E_n)\ \langle l \ |p| \ n \rangle \langle n \ |p| \ l \rangle $$
and tried to insert the p I solved:
$$\sum_l^\infty (E_l-E_n)\ (-\frac{\hbar}{2mw}) \langle l \ |b-b^\dagger| \ n \rangle \langle n \ |b-b^\dagger| \ l \rangle $$
is this correct? If yes, how do I continue? The hint says to probably use $$H|n\rangle=\hbar(n+\frac 12)|n\rangle$$ and I know that $$H|n\rangle=E|n\rangle$$
 
Physics news on Phys.org
chocopanda said:
To start, I at least tried to expand the bra-ket:
$$\sum_l^\infty (E_l-E_n)\ \langle l \ |p| \ n \rangle \langle n \ |p| \ l \rangle $$
I wouldn't do that right away. I would start by calculating ##\langle l \ |p| \ n \rangle## first, and then consider the absolute value squared.

chocopanda said:
and tried to insert the p I solved:
$$\sum_l^\infty (E_l-E_n)\ (-\frac{\hbar}{2mw}) \langle l \ |b-b^\dagger| \ n \rangle \langle n \ |b-b^\dagger| \ l \rangle $$
is this correct? If yes, how do I continue?
Calculate ##(b-b^\dagger) |n\rangle##.
 
DrClaude said:
I wouldn't do that right away. I would start by calculating ##\langle l \ |p| \ n \rangle## first, and then consider the absolute value squared.Calculate ##(b-b^\dagger) |n\rangle##.

Hello DrClaude, thank you for replying. I tried to do what you suggested:

$$| \langle l|p|n \rangle |^2 = \langle n|p^2|n\rangle = \frac{h}{2mw} (2n+1) $$
That's my result. How would I continue?
 
chocopanda said:
Hello DrClaude, thank you for replying. I tried to do what you suggested:

$$| \langle l|p|n \rangle |^2 = \langle n|p^2|n\rangle = \frac{h}{2mw} (2n+1) $$
That's my result. How would I continue?
That's not correct. How can the bra ##\langle l |## even become ##\langle n |##?

As I said, forget the absolute value squared for now. Start by calculating ##(b-b^\dagger) |n\rangle## and then apply that to ## \langle l|p|n \rangle##.
 
Are you forced to do it in that complicated way? It's simpler to use the commutation relations, ##[\hat{x},\hat{p}]=?##, ##[\hat{H},\hat{x}]=?## as well as to think about what's
$$\sum_{i} |\langle n|\hat{O}|i \rangle|^2=?$$
for a general operator ##\hat{O}##.
 
  • Like
Likes   Reactions: PhDeezNutz

Similar threads

Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
11
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K